K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

Đáp án D

Gọi O là một điểm bất kì bên trong khối đa diện.

Chia khối đa diện đều n mặt đã cho thành n khối chóp có đỉnh là O và các mặt đáy là các mặt của khối đa diện. Chiều cao hạ từ O đến n mặt tương ứng là h 1 , h 2 , . . . , h n  

Khi đó 

30 tháng 7 2018

Chọn C

Vì bài toán cho với đa diện đều n mặt và một điểm bất kỳ bên trong đa diện, nên ta chọn đa diện đều là hình lập phương cạnh a, và điểm bất kỳ là tâm I của nó. Khi đó, ta có:

Tổng khoảng cách từ I đến các mặt bên là 6 × a 2 = 3 a  (đvđd)

Thể tích V = a 3  (đvtt), diện tích mỗi mặt bên S = a 2 (đvdt)

Suy ra, tổng khoảng cách bằng 3 V S .

20 tháng 5 2017

Giả sử (P) cắt AA', BB'

Khối đa diện

28 tháng 3 2018

16 tháng 8 2019

Đáp án B

12 tháng 11 2019

Chọn đáp án D

Gọi 

Khi đó góc giữa 2 mặt phẳng (SBD) và (ABCD) bằng 45o

Ta có: ∆BAD đều 

Thể tích khối chóp S.ABCD bằng: 

Ta có: N là trung điểm SC nên 

Thể tích khối chóp N.MCD bằng thể tích khối chóp N.ABCD bằng: 

Ta có K là trọng tâm tam giác SMC

14 tháng 5 2017

23 tháng 2 2018

Ta có tứ diện đều ABCD, M là một điểm trong của nó. Gọi V là thể tích, S là diện tích mỗi mặt của tứ diện đều ABCD, h A ,   h B ,   h C ,   h D  lần lượt là khoảng cách từ M đến các mặt (BCD), (CDA), (DAB), (ABC).

Khi đó ta có:

V = V MBCD + V MCDA + V MDAB + V MABCV

= S( h A + h B + h C + h D )/3

Từ đó suy ra  h A + h B + h C + h D  = 3V/S

10 tháng 6 2018

20 tháng 5 2017

Khối đa diện