Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi H là tâm của tam giác đều ABC => SH ⊥ (ABC)
(SA;(ABC))
Đáp án D.
Gọi O là tâm của hình vuông ABCD.vì S.ABCD là hình chop đều nên SO ⊥ (ABCD)
Từ giả thiết, ta có
Khối nón ngoại tiếp hình chóp S.ABCD có chiều cao
và bán kính đáy là
và bán kính đáy là
Suy ra
Ta có SO là trục đường tròn ngoại tiếp hình vuông ABCD. Đường trung trực của SB nằm trong mặt phẳng (SBD) cắt SB, SO lần lượt tại M, I. Ta có IS = IB = IA = IC = ID nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.
Ta có SI.SO = SM.SB
Suy ra
Do đó V 1 V 2 = 108 25
Phân tích phương án nhiễu.
Phương án A: Sai do HS nhớ nhầm công thức tính thể tích khối cầu là
Do đó tính được V 1 V 2 = 324 25
Phương án B: Sai do HS nhớ nhầm công thức tính thể tích khối nón là
Do đó tính được V 1 V 2 = 18 30 25
Phương án C: Sai do HS nhớ sai công thức tính thể tích khối nón là
Do đó tính được V 1 V 2 = 36 25
Đáp án D
Gọi O là giao AC và BD, M là trung điểm CD
Vì S.ABCD là hình chóp đều
=> O là hình chiếu của S trên (ABCD)
Ta có: OM ⊥ CD và SM ⊥ CD
Vậy
Đáp án B
Gọi M là trung điểm BC; Gọi d là khoảng cách từ A tới (SBC)
Ta có: