K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Đáp án D.

Thể tích khối chóp cụt A B C . A ' B ' C '  được tính bằng công thức

V = h 3 B + B ' + B B ' = h 3 + 4 + 9 + 4.9 = 19 3 h

Thể tích của phần  được tính bằng công thức   V 1 = 1 3 . h .4 = 4 3 h

Tỉ số thể tích giữa   ( H 1 )   ( H 2 ) là 4 3 h 19 3 h − 4 3 h = 4 15 . Ta chọn D.

4 tháng 8 2018

Đáp án B

Gọi HH' = h là khoảng cách giữa hai mặt phẳng đáy, S là đỉnh của hình chóp cụt (hình vẽ).

Mặt phẳng (ABC′) chia hình chóp cụt thành 2 phần: C′ABCABB′A′C′ có thể tích lần lượt là  V 1   V 2 .

V 1 = 1 3 h S

Gọi V là thể tích khối chóp cụt ABCA′B′C

27 tháng 2 2019

3 tháng 8 2017

Chọn đáp án C.

3 tháng 7 2017

Đáp án C

 

 Ta có 

B C ⊥ A C , B C ⊥ A A ' ⇒ B C ⊥ A ' A C C ' ⇒ B C ⊥ A ' C .

 

Suy ra

A ' C B , A B C ^ = A ' C , A C ^ = A ' C A ^ = x , 0 < x < π 2 .  

Δ A ' A C  vuông tại B nên 

A A ' = A ' C . sin A ' C A ^ = a sin x ; A C = a cos x .

Suy ra 

V A ' . A B C = 1 3 . A A ' . S Δ A B C = 1 3 . a sin x . a cos x 2 2 = a 3 6 sin x cos 2 x .

Xét hàm số

f x = sin x cos 2 x = sin x 1 − sin 2 x trên 0 ; π 2 .  

Đặt t = sin x , do x ∈ 0 ; π 2 ⇒ t ∈ 0 ; 1 . Xét hàm số   g t = t 1 − t 2  trên  0 ; 1 .

Ta có

f ' t = 1 − 3 t 2 ; f ' t = 0 ⇔ t = ± 1 3 .

Do t ∈ 0 ; 1 nên  t = 1 3 .

Lập bảng biến thiên, suy ra max x ∈ 0 ; π 2 f x = max t ∈ 0 ; 1 g t = g 1 3 = 2 3 9 .  

Vậy V max = a 3 6 . 2 3 9 = a 3 3 27  (đvtt).

14 tháng 11 2019

13 tháng 2 2017

Chọn D.

Phương pháp:

+) Sử dụng công thức tỉ lệ thể tích:

Cho khối chóp S.ABC, các điểm A 1 ,   B 1 ,   C 1  lần lượt thuộc SA, SB, SC

+) Chia khối chóp đã cho thành các khối chóp nhỏ, tính thể tích của từng khối chóp.

Cách giải:

I,J lần lượt là trung điểm của SM, SC (do K là trung điểm của SA)

Trong (SAB), gọi N là giao điểm của IK và AB

Trong (ABCD), kẻ đường thẳng qua N song song AC, cắt AD tại Q, CD tại P.

Khi đó, dễ dàng chứng minh P, Q lần lượt là trung điểm của CD, AD và

*) Gọi L là trung điểm của SD

Khi đó, khối đa diện SKJPQD được chia làm 2 khối: hình lăng trụ tam giác KJL.QPD và hình chóp tam giác S.KJL

18 tháng 3 2017

Chọn đáp án C

Gọi O là giao điểm của AC và BD

Ta có

⇒ Thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MND) là tứ giác DEFN.

Suy ra V 1 = V S . A D E F N và   V 2 = V B C D E F N

Từ giả thiết ta có ∆ A B D đều cạnh a

 

Thể tích khối chóp N.MCD là

V N . M C D = 1 3 d N ; M C D . S ∆ M C D = a 3 4  

Ta có F là trọng tâm của ∆ S M C nên M F M N = 2 3 ; E là trung điểm của MD nên M E M D = 1 2  

Áp dụng công thức tính thể tích ta có:

Thể tích khối chóp S.ABCD là

V S . A B C D = 1 3 . S A . S A B C D = a 3 4  

Suy ra V 1 = V S . A D E F N = V S . A B C D - V 2 = a 3 24  

Vậy  V 1 V 2 = 1 5

21 tháng 6 2018

30 tháng 1 2018

Chọn đáp án D

Thể tích khối chóp N.MCD bằng thể tích khối chóp N.ABCD: 

FOR REVIEW

Tam giác cân có một góc bằng 60 °  thì là tam giác đều.