Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp giải:
Để i n là số nguyên dương thì n là số nguyên dương chia hết cho 4
Lời giải:
Xét n=2k khi đó là số nguyên dương khi k chẵn.
Kết hợp với suy ra và là số chẵn.
Với mỗi bộ số có 2 số k thỏa mãn, có 3 số k thỏa mãn.
Vậy có tất cả 2.5+3.4=22 số thỏa mãn yêu cầu bài toán.
Đáp án B
Phương pháp.
Gọi . Sử dụng giả thiết để tìm a, bsuy ra giá trị của z. Sử dụng kết quả này để tìm giá trị của m và kết luận.
Lời giải chi tiết.
Giả sử Khi đó ta có
Để là số thuần ảo thì ta phải có
Từ (1) suy ra thay vào (2) ta nhận được
Nếu m=2 thì (3) vô nghiệm
Nếu m ≠ 2 thì từ (3) suy ra
Vì nên để có duy nhất một số phức z thỏa mãn điều kiện đã cho thì b=0
Ta nhận được a=0 hoặc a=4
với a=4 thì z=a+bi=4. Loại vì là số thuần ảo
vậy a=b=0 ⇒ z=0. Khi đó
Tổng các phần tử của S là 6+(-6)=0
Đáp án B
Phương trình (1) có hai nghiệm dương phân biệt khi và chỉ khi phương trình (2) có hai nghiệm phân biệt lớn hơn 1.
Bảng biến thiên của hàm số y = t 2 - 10 t
Phương trình (2) có hai nghiệm phân biệt lớn hơn 1 khi và chỉ khi -25< m < -9
Vậy S = {-24;-23;...;-10} và n(S) =15
Đáp án A