K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
30 tháng 7 2021
a) Xét ΔCDH vuông tại D và ΔBAH vuông tại A có
\(\widehat{CHD}=\widehat{BHA}\)(hai góc đối đỉnh)
Do đó: ΔCDH\(\sim\)ΔBAH(g-g)
Suy ra: \(\dfrac{HD}{HA}=\dfrac{HC}{HB}\)
hay \(HB\cdot HD=HA\cdot HC\)
b) Ta có: \(\dfrac{HD}{HA}=\dfrac{HC}{HB}\)(cmt)
nên \(\dfrac{HD}{HC}=\dfrac{HA}{HB}\)
Xét ΔADH và ΔBCH có
\(\dfrac{HD}{HC}=\dfrac{HA}{HB}\)(cmt)
\(\widehat{AHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔADH\(\sim\)ΔBCH(c-g-c)
a, có : ^DCH + ^HCB = 90
^HCB + ^CBH = 90
=> ^DCH = ^HBC (1)
có : ^DHC + ^CHN = 90
^BHN + ^NHC = 90
=> ^DHC = ^BHN (2)
(1)(2) => tg CHD đồng dạng với tg BHN (g-g)
b, ^HMB + ^MBH = 90
^HBC + ^HBM = 90
=> ^HMB = ^HBC
xét tg MBH và tg BCH có : ^MHB = ^CHB = 90
=> tg MHB đồng dạng với tg BHC (g-g)
b, tg MHB đồng dạng với tg BHC (câu b) => MB/BC = HB/HC (đn)
tg CHD đồng dạng với tg BHN (câu a) => BN/DC = HB/HC (đn)
=> MB/BC = BN/DC
BC = DC do ABCD là hình vuông (gt)
=> BM = BN