K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

Câu hỏi của Hàn Hy - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

22 tháng 1 2018

Câu hỏi của Hàn Hy - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

22 tháng 1 2018

a) Chưa có điều kiện để xác định được điểm N

b) Em tham khảo tại đây nhé.

Câu hỏi của Hàn Hy - Toán lớp 9 - Học toán với OnlineMath

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

22 tháng 1 2018

Em tham khảo tại đây để chứng minh \(\widehat{KPC}=90^o\) 

Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath

A D C B I K P Q

Dễ dàng chứng minh được \(\Delta QBA=\Delta IAD\)   (Cạnh huyền - góc nhọn)

Vậy nên BQ = AI = AK

Vậy thì BQKA là hình chữ nhật, suy ra AB // QK.

Do AB vuông góc BC nên QK vuông góc BC hay \(\widehat{KQC}=90^o\)

Các tam giác vuông QKC, PKC, DKC có chung cạnh huyền KC nên C, Q, P, K, D cùng thuộc đường tròn đường kính CK.

31 tháng 7 2017

làm tương tự

Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo AC và BD, M là trung điểm của OB, N là trung điểm của CD. 
a, Chứng minh: +góc AMN vuông. 
+A, M, N, D cùng thuộc một đường tròn, xác định tâm của nó. 
+ AN>MD 
b, Trên AB, AD thứ tự lấy I, K sao AI=Ak. Kẻ AP vuông góc DI, cắt BC tại Q. Chứng minh 5 điểm C, D, K, P, Q cùng nằm trên một đường tròn

Bài làm 

Từ M hạ ME vuông góc AD,MF vuông góc DC (ME//AB, MF//BC) , nối MA và MN ta có DM = 3/4.DB => AE = CF = 1/4 AD ( AD = DC= AB = BC cạnh hình vuông) 
ME = MF = 3/4.AB, NC = 1/2.DC và CF = 1/4 DC => NF = 1/4 DC 
=> tam giác vuông AEM = tam giác vuông NFM ( hai cặp cạnh góc vuông bằng nhau đôi một) 
=>góc AME = góc NMF mà góc NMF + góc EMN = 90 độ => góc AME + góc EMN = 90 độ 
=> góc AMN = 90 độ (điều phải cm) 
Gọi I là trung điểm AN, do tam giác ADN vuông tại D =>ID= IA = IN (trung tuyến thuộc cạnh huyền bằng 1/2 cạnh huyền) , tương tự có tam giác AMN vuông tại M => IM = IA = IN 
=> 4 điểm A, D, N, M cách đều I => A, M, N, D cùng thuộc một đường tròn tâm là trung điểm I của đoạn AN 
tam giác vuông cân DEM có DM^2 = 2.ME^2 
tam giác vuông cân AMN có AN^2 = 2.MA^2 mà MA > ME 
=> AN^2 > DM^2 => AN > DM (điều phải cm) 

b, Trên AB, AD thứ tự lấy I, K sao AI=Ak. Kẻ AP vuông góc DI, cắt BC tại Q. Chứng minh 5 điểm C, D, K, P, Q cùng nằm trên một đường tròn 
góc DPQ = 90 độ (theo cách dựng AP vuông góc DI) 
và góc DCQ = 90 độ (gt ABCD là hình vuông) nên D, P, C, Q thuộc đường tròn đường kính DQ. 
ta sẽ c/m K thuộc đường tròn đường kính DQ.nghĩa là góc DKQ = 90 độ 
xét tứ giác IPQB có góc P và B vuông => góc PQB + góc PIB = 180 độ 
mà góc góc PIB + góc PIA = 180 độ =>góc PIA =góc PQB => góc DIA = góc AQB 
xét 2 tam giác vuông DAI và ABQ có AD = AB và góc DIA = góc AQB 
=> tam giác DAI = tam giác ABQ ( cạnh góc vuông, góc nhọn) => AK = BQ => KQ//AB 
=> góc DKQ = 90 độ => K thuộc đường tròn đường kính DQ. 
=> 5 điểm C, D, K, P, Q cùng nằm trên một đường tròn ( điều phải c/m)

AH vuông góc DM

=>góc MAH=góc MDA

Xét ΔABP vuông tại B và ΔDAM vuông tại A có

AB=AD

góc MAH=góc MDA

=>ΔABP=ΔDAM

=>BP=AM=AN

mà BC=AD

nên PC=ND

=>PCND là hình chữ nhật

=>P,C,D,N cùng nằm trên đường tròn đường kính DP

mà H nằm trên đường tròn đường kính DP(góc DHP=90 độ)

nên C,D,N,H,P cùng thuộc 1 đường tròn