K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

Kẻ AG⊥AF
Xét △ABE và △ADG có
\(\widehat{BAE}=\widehat{DAG}\) (cùng phụ góc DAF)
\(\widehat{ABE}=\widehat{ADG}=90^o\)
suy ra △ABE=△ADG
=> AE=AG(2 cạnh tương ứng)
Xét △AGF vuông tại A đường cao AD, Ta có:
\(\dfrac{1}{AD^2}=\dfrac{1}{AG^2}+\dfrac{1}{AF^2}\)
\(\Leftrightarrow\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

18 tháng 12 2016

giúp mình với ạ

a: Xét ΔABM vuông tại B và ΔADN vuông tại D có

AB=AD

góc BAM=góc DAN

=>ΔABM=ΔADN

=>AM=AN

=>ΔAMN vuông cân tại A

b: 1/AM^2+1/AE^2

=1/AN^2+1/AE^2

=1/AD^2 ko đổi

AH
Akai Haruma
Giáo viên
17 tháng 9 2017

Lời giải:

Đẳng thức của bạn bị nhầm, đề bài là: \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\)

Vì \(AB\parallel CF\) nên áp dụng định lý Thales có:

\(\frac{AE}{EF}=\frac{BE}{EC}\Rightarrow \frac{AE}{AF}=\frac{BE}{BC}\)

\(\Leftrightarrow \frac{AE^2}{AF^2}=\frac{BE^2}{BC^2}=\frac{AE^2-AB^2}{BC^2}\) (theo định lý Pitago)

\(\Leftrightarrow \frac{AE^2}{AF^2}=\frac{AE^2}{BC^2}-1=\frac{AE^2}{AB^2}-1\)

\(\Leftrightarrow \frac{AE^2}{AF^2}+1=\frac{AE^2}{AB^2}\Rightarrow \frac{1}{AF^2}+\frac{1}{AE^2}=\frac{1}{AB^2}\)

8 tháng 12 2017

Thales là định lí lớp mấy ạ

9 tháng 9 2018

Hình bạn tự vẽ nha.

a, ABCD là hình vuông \(\Rightarrow AB=BC=CD=AD\)

Ta có: \(\hat{IAD}+\hat{DAE}=90^o\)

\(\hat{BAE}+\hat{DAE}=90^o\)

\(\Rightarrow \hat{IAD} =\hat{BAE}\)

Xét \(\Delta ADI\)\(\Delta ABE\) có:

\(\hat{ADI}=\hat{ABE}=90^o\)

\(AD=AB\left(cmt\right)\)

\(\hat{IAD}=\hat{BAE}(cmt)\)

\(\Rightarrow\Delta ADI=\Delta ABE\left(g-c-g\right)\Rightarrow AI=AE\)

b, \(\Delta AIK\) có: \(\hat{IAK}=90^o\), \(AD\perp IK\)

\(\Rightarrow AD.IK=AI.AK\) (hệ thức lượng trong tam giác vuông) mà \(AI=AE\left(cmt\right)\Rightarrow AD.IK=AE.AK\)

c, \(\Delta AIK\) có: \(\hat{IAK}=90^o\), \(AD\perp IK\)

\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\)(hệ thức lượng trong tam giác vuông) mà \(AI=AE\left(cmt\right)\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) mà hình vuông ABCD không đổi \(\Rightarrow\) AD không đổi\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) không đổi

Vậy \(\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) không đổi khi E thay đổi trên cạnh BC

Hai câu cuối í ẹ chưa nghĩ ra, để sau.

12 tháng 9 2018

Thanks