K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

Vì ABCD là hình vuông (giả thiết).

\(\Rightarrow AB=BC=CD=DA\)(tính chất)

Và \(AB//CD\)(tính chất)  \(\Rightarrow AB//DF\).

Và \(AD//CE\)(tính chất) \(\Rightarrow CE//AD\)

\(AB//DF\)(chứng minh trên)

\(\frac{AB}{AE}=\frac{FC}{FE}\)(hệ quả của định lí Ta-lét)

\(\Rightarrow\frac{AD}{AE}=\frac{FC}{FE}\)(vì \(AB=AD\))

\(\Rightarrow\frac{AD^2}{AE^2}=\frac{FC^2}{FE^2}\left(1\right)\)

Vì \(AB//CF\)(giả thiết)

\(\Rightarrow\frac{BE}{CE}=\frac{AE}{FE}\)(hệ quả của định lí Ta-lét) (2)

\(\Rightarrow\frac{BE}{CE+BE}=\frac{AE}{FE+AE}\)(tính chất của tỉ lệ thức)

\(\Rightarrow\frac{BE}{BC}=\frac{AE}{AF}\)\(\Rightarrow\frac{BE}{AD}=\frac{AE}{AF}\)(vì \(AD=BC\))

\(\Rightarrow\frac{AD}{AF}=\frac{BE}{AE}\)(tính chất của tỉ lệ thức)

Từ (2) \(\Rightarrow\frac{BE}{AE}=\frac{CE}{FE}\)(tính chất của tỉ lệ thức)

Do đó \(\frac{AD}{AF}=\frac{CE}{FE}\Rightarrow\frac{AD^2}{AF^2}=\frac{CE^2}{FE^2}\left(3\right)\)

Từ (1) và (3)

\(\Rightarrow\frac{AD^2}{AE^2}+\frac{AD^2}{AF^2}=\frac{FC^2}{FE^2}+\frac{CE^2}{FE^2}\)

\(\Rightarrow AD^2\left(\frac{1}{AE^2}+\frac{1}{AF^2}\right)=\frac{FC^2+CE^2}{FE^2}\)

Vì ABCD là hình vuông (giả thiết)

\(\Rightarrow BC\perp CD\)(tính chất)\(\Rightarrow EC\perp DF\)

Do đó \(\Delta CEF\)vuông tại C.

\(\Rightarrow CE^2+CF^2=EF^2\)(định lí Py-ta-go)

Do đó: \(AD^2\left(\frac{1}{AE^2}+\frac{1}{AF^2}\right)=\frac{FE^2}{FE^2}=1\)

\(\Rightarrow\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AD^2}\)(điều phải chứng minh).

20 tháng 3 2021

A B D C E F

3 tháng 8 2016

nếu cần thì mình làm cho

3 tháng 8 2016
Đính chính là qua a mà cắt ab à @ phải cât bc taik e Qua a kẻ tia ax vupong góc voies ae tại a, ax cât bc tại d .....

I don't now

...............

.................

NV
19 tháng 9 2021

Qua A kẻ đường thẳng vuông góc AF cắt đường thẳng CD tại P

Xét hai tam giác vuông ABE và ADP có:

\(\left\{{}\begin{matrix}\widehat{B}=\widehat{D}=90^0\\AB=AD\\\widehat{BAE}=\widehat{DAP}\left(\text{ cùng phụ }\widehat{DAE}\right)\end{matrix}\right.\) 

\(\Rightarrow\Delta ABE=\Delta ADP\Rightarrow AP=AE\)

Áp dụng hệ thức lượng trong tam giác vuông APF:

\(\dfrac{1}{AD^2}=\dfrac{1}{AP^2}+\dfrac{1}{AF^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (đpcm)

NV
19 tháng 9 2021

undefined

2 tháng 7 2018

câu a ) mình nhầm nha \(\Delta AGE\)mới đúng nha các bn

Ai làm đúng nhanh mik tích cho

3 tháng 7 2018

hình vuông nha các bạn ko phải hình thang vuông

4 tháng 7 2017

bạn tự vẽ hình nha

qua A kẻ AI vuông góc với EF cắt BC tại I

áp dụng hệ thức lượng vào tam giác vuông AEI có AB là đường cao \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AI^2}\) (1)

de dang chung minh duoc tam giac vuong ABI= tam giac vuong AFD(cgv-gnk)

\(\Rightarrow AF=AI\) 

thay vao 1 ta co \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\left(DPCM\right)\)

17 tháng 12 2017

qua A vẽ đường thẳng vuông góc với AE cắt CD tại G 
xét tam giác ABE và tam giác ADG có 
góc BAE = góc GAD ( vì cùng phụ với góc DAE ) 
AB=AD ( vì tứ giác ABCD là hình vuông ) 
góc ADG = góc ABE = 90 độ 
=> tam giác ABE = tam giác ADG (g.c.g) 
=> AE=AG => 1/AE^2=1/AG^2 (1) 
mặt khác xét tam giác GAF vuông tại A có đường cao AD nên ta có 
1/AG^2 + 1/AF^2 = 1/AD^2 (2) 
từ (1) và (2) => 1/AD^2 = 1/AE^2 + 1/AF^2 mà AD = AB => 1/AB^2 = 1/AE^2 + 1/AF^2