K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

đầu mk cx nát ra vì bài của bn đó

17 tháng 3 2016

a) xet tg DEA va tg DFC ta co; 

A=D=90 ; AD=DC; AE=MF=DF ( vi tg DFM vuong can)

vay 2 tg = nhau => DE=CF

b) h di em lam

c)diem M se nam o giao diem 2 dg cheo khi do AEMF la hinh vuong se co Smax

( em hoc lop 6 ma chang nat oc j )

a) Ta có: ABCD là hình vuông

nên DB là tia phân giác của \(\widehat{ADC}\)

\(\Leftrightarrow\widehat{ADB}=\widehat{CDB}=45^0\)

hay \(\widehat{FDM}=45^0\)

Xét ΔMFD vuông tại F có \(\widehat{FDM}=45^0\)(cmt)

nên ΔMFD vuông cân tại F

Suy ra: FM=FD(1)

Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)

\(\widehat{AFM}=90^0\)

\(\widehat{AEM}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AE=MF(2)

Từ (1) và (2) suy ra AE=DF

Xét ΔAED vuông tại A và ΔDFC vuông tại F có 

AE=DF

AD=DC

Do đó: ΔAED=ΔDFC

Suy ra: DE=CF

8 tháng 8 2021

a, AEMF là hình chữ nhật nên AE=FM

ΔDFM vuông cân tại suy ra FM=DF

⇒AE=DFsuy ra ΔADE=ΔDCF

⇒DE=CF

 

b, Tương tự câu a, dễ thấy AF=BE

⇒ΔABF=ΔBCE

⇒ABF^=BCE^ nên BF vuông góc CE

Gọi là giao điểm của BFvà DE

⇒H là trực tâm của tam giác CEF

Gọi là giao điểm của BCvà MF

CN=DF=AEvà MN=EM=AF

ΔAEF=ΔCMN

⇒ˆAEF=ˆMCN

⇒CM⊥EF

A B C D H M

a, \(AEMF\)là hình chữ nhật nên \(AE=FM\)

\(DFM\)vuông cân tại \(F\)suy ra \(FM=DF\)

\(\Rightarrow AE=DF\)suy ra \(\Delta ADE=\Delta DCF\)

\(\Rightarrow DE=CF\)

b, Tương tự câu a, dễ thấy \(AF=BE\)

\(\Rightarrow\Delta ABF=\Delta BCE\)

\(\Rightarrow\widehat{ABF}=\widehat{BCE}\) nên \(BF\)vuông góc \(CE\)

Gọi \(H\)là giao điểm của \(BF\)và \(DE\)

\(\Rightarrow H\)là trực tâm của tam giác \(CEF\)

Gọi \(N\)là giao điểm của \(BC\)và \(MF\)

\(CN=DF=AE\)và \(MN=EM=AF\)

\(\Delta AEF=\Delta CMN\)

\(\Rightarrow\widehat{AEF}=\widehat{MCN}\)

\(\Rightarrow CM\perp EF\)

\(\Rightarrow\)Ba đường thẳng DE,BF,CM đồng quy tại H

c, \(AE+EM=AE+EB=AB\)không đổi

\(\left(AE-EM\right)^2\ge0\Rightarrow AE^2+AM^2\ge2AE.AM\)

\(\Rightarrow\left(AE+AM\right)^2\ge4AE.AM\Rightarrow\left(\frac{AE+EM}{2}\right)^2=\frac{AB^2}{4}\ge AE.AM=S_{AEMF}\)

Vậy \(S_{AEMF}max\)khi \(AE=EM\)( M là giao AC và và BD )

21 tháng 5 2021

M C D E A B