K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2015

Bạn vào câu hỏi tương tự xem đúng ko nhé !

5 tháng 11 2015

Xét tam giác vuông AHE và tam giác vuông BHA có góc AEH = HAB( cùng phụ HAE) nên đồng dạng suy ra

AH/BH = AE/AB mà AE = AF; AB = BC, suy ra AH/BH = AF/BC (1)

Mặt khác góc AEH = HBC( so le trong ), nên góc HAF = HBC (2)

Từ (1) và (2) suy ra : tam giác AHF đồng dạng tam giác BHC(c-g-c)

suy ra góc AHF = góc BHC. Mà góc AHF phụ với góc FHB, do đó góc BHC phụ góc FHB. Vậy góc CHF =

900

 

5 tháng 2 2015

Sai đề rồi bạn. Tính góc CHF chứ??

15 tháng 5 2020

điên ghvfgfygbffrdgev

6 tháng 8 2018

Gọi giao điểm của AH và DC là I.

AF song song với DI (cùng vuông góc với AD) (1)

\(\Delta ADI=\Delta BAE\left(g.c.g\right)\Rightarrow DI=AE\) ( 2 cạnh tương ứng )

Mà \(AE=AF\left(gt\right)\Rightarrow DI=AF\) (2)

Từ (1) và (2) \(\Rightarrow AFID\)là hình bình hành.

Mà \(\widehat{FAD}=90^0\Rightarrow AFID\) là hình chữ nhật.

Từ đó: FBCI là hình chữ nhật nên IB = CF (t/c hình chữ nhật)

Gọi O là giao điểm của FC và BI \(\Rightarrow O\) là trung điểm của FC và BI

\(\Delta BHI\) vuông tại B có HO là đường trung tuyến ứng với cạnh CF nên

\(HO=\frac{1}{2}BI\Rightarrow HO=\frac{1}{2}CF\)

\(\Delta CHF\)có đường trung tuyến HO = 1/2 CF nên \(\Delta CHF\) vuông tại H.

Vậy \(\widehat{CHF}=90^0\)

Mình chỉ hướng dẫn bước thôi. Bạn tự trình bày nhé

Mong bạn hiểu lời giải. Chúc bạn học tốt.

7 tháng 8 2018

Cảm ơn bạn nhiều.

17 tháng 10 2022

Bài 3: 

a: Xét ΔCDF vuông tại C và ΔBCE vuông tại B có

CD=BC

CF=BE

Do đó: ΔCDF=ΔBCE
=>góc CDF=góc BCE

=>góc BCE+góc MFC=góc DFC+góc CDF=90 độ

=>CE vuông góc với DF

b: Gọi Klà trung điểm của CD và N là giao của AK và DF

Xét tứ giác AECK có

AE//CK

AE=CK

Do dó: AECK là hình bình hành

SUy ra: AK=CE và AK//CE

=>AK vuông góc với DF

Xét ΔDMC có

K là trung điểm của DC

KN//MC

Do đó: N là trung điểm của DM

Xét ΔAMD có

AN vừa là đường cao, vừa là đường trung tuyến

nên ΔAMD cân tại A