Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD có : M là trung điểm AB (gt)
Q là trung điểm AD (gt)
=> MQ là đường trung bình của ΔABD
=> MQ // BD ; MQ = 1/2 BD (1)
Xét ΔCBD có : N là trung điểm BC (gt)
P là trung điểm CD (gt)
=> NP là đường trung bình của ΔCBD
=> NP // BD ; NP = 1/2 BD (2)
Từ (1) và (2) => MQ // NP; MQ = NP
Xét tứ giác MNPQ có : MQ // NP (cmt)
MQ = NP (cmt)
=> Tứ giác MNPQ là hình bình hành
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
Xét ΔDAC có DP/DC=DQ/DA
nên PQ//AC và PQ=AC/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
=>AC=BD
Answer:
Hình bạn tự vẽ.
a, Ta xét tam giác ABC
\(AM=MB=\frac{1}{2}AB\)
\(BN=NC=\frac{1}{2}BC\)
\(\Rightarrow MN\) là đường trung bình của tam giác ABC
\(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}BC\\MN//AC\end{cases}}\)
Chứng minh tương tự, ta được
\(NP;PQ;QM\) lần lượt là đường trung bình của tam giác BCD; tam giác ACD; tam giác ABD
Ý này nếu trình bày trong vở viết bạn gộp tất cả vào một cái ngoặc "và" nhé.
\(NP=\frac{1}{2}BD\)
\(NP//BD\)
\(PQ=\frac{1}{2}AC\)
\(PQ//AC\)
\(QM=\frac{1}{2}BD\)
\(QM//BD\)
Do vậy: \(\hept{\begin{cases}MN//PQ;MN=PQ\\NP//QM;NP=QM\end{cases}}\)
Vậy MNPQ là hình bình hành
b, MNPQ là hình chữ nhật
\(\Rightarrow\widehat{MNP}=90^o\)
\(\Rightarrow MN\perp NP\)
Mà \(\hept{\begin{cases}MN//AC\\NP//BD\end{cases}}\Rightarrow AC\perp BD\)
Vậy tứ giác ABCD có hai đường chéo vuông góc thì MNPQ là hình chữ nhật
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
vì dễ quá nên không ai trả lời :D, bạn tự vẽ hình nhé
xét tam giác ADB có Q trung điểm AD, M trung điểm AB => MQ là đường trung bình tam giác ADB => MQ // BD và MQ = 1/2 BD.(1)
xét tam giác BCD có N trung điểm BC , P trung điểm CD => MP là đường trung bình tam giác BCD => NP//BD, NP= 1/2 BD(2)
(1)(2) => MQ // NP(vì cùng //BD) và MQ = NP (vì cùng = 1/2BD) => MQPN là hình bình hành
Xét tứ giác ABD có : AQ=QD ;AM=MB
suy ra MQ là đường trung bình của tam giác ABD
vậy MQ= 1/2 BD và MQ song song với BD*
Xét tam giác CDB có : PD=PC;NC=NB
suy ra NP là đường trung bình của tam giác CDB
vậy NP song song với BD và NP =1/2 BD**
từ *và ** suy ra MQ song song với MP
MQ =MP
vậy tứ giác MNPQ là HBH
MNPQ là hình vuông
Cảm ơn cậu nhiều ạaa!