K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

A B C D 1 1 1 1 2 2 2 2

Giải:
Xét \(\Delta ABC,\Delta ADC\) có:

\(\widehat{A_1}=\widehat{C_1}\) ( do đây là 2 góc so le trong và AB // CD )

\(AB=CD\left(gt\right)\)

\(\widehat{A_2}=\widehat{C_2}\) ( do đây là 2 góc so le trong và AB // CD )

\(\Rightarrow\Delta ABC=\Delta ADC\left(g-c-g\right)\)

\(\Rightarrow AD=BC\) ( cạnh tuong ứng )

\(\widehat{A_2}=\widehat{C_2}\) ( do đây là góc so le trong và AB // CD ) và 2 góc này ở vị trí so le trong nên AD // BC

Vậy AD = BC; AD // BC

 


 

23 tháng 7 2016

Ta có: EA = EC

         FB=FC

=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ

=> ABC là tam giác vuông cân tại A

Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)

Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2

                                                                    AE = BC = AB căn2, pitago vào tam giác vuông EDB

=> BE2 = 5AB2 (2)

Từ (1) và (2)suy ra BE=BF

Vậy vuông góc chứng minh BEF =45 độ 

23 tháng 7 2016

Giải :

Có EA=EC 
FB=FC 
SUY RA FC/EC=FB/EA 
theo Talét đảo suy ra AE//BF 
2.C = 45 độ suy ra ABC là tam giác vuông cân tại A 
XÉT tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1) 
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD=BD=ABcăn2/2 
AE=BC=ABcăn2, pitago vào tam giác vuông EDB suy ra BE^2=5AB^2 (2) 
Từ (1) và (2)suy ra BE=BF 
CÁi vuông góc chứng minh BEF =45 độ

22 tháng 3 2018

Help me!!!!!!!!

10 tháng 1 2018

22 tháng 3 2018

cai gi

cai gi

19 tháng 1 2022

a) Ta có:    \(\widehat{AMD}=\widehat{AMC}+\widehat{CMD}\)

                             \(=60^0+\widehat{CMD}\)             \(\left(1\right)\)

Lại có:       \(\widehat{CMB}=\widehat{BMD}+\widehat{CAD}\)

                             \(=60^0+\widehat{CMD}\)             \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\):   ⇒    \(\widehat{AMD}=\widehat{CMB}\)

Xét △ AMD và △ CMB có:

   CH = AM ( △ AMC đều )

   \(\widehat{AMD}=\widehat{CMB}\)    ( cmt )

   MB = MD ( △ BMD đều )

⇒ △ AMD = △ CMB     ( c - g - c )

Do đó:  AD = CB  ( 2 cạnh tương ứng )

b) Ta có:   \(CK=\dfrac{BC}{2}\)   ( K là trung điểm CB )

    Ta có:   \(AI=\dfrac{AD}{2}\)    ( I là trung điểm AD )

Mà    BC = AD ( cmt )          ⇒    CK = AI
Xét △ AMI và △ CMK có:

   CM = AM ( △ AMC đều )

   \(\widehat{IAM}=\widehat{KCM}\)  ( vì △ AMD = △ CMB )

   AI = CK ( cmt )

⇒ △ AMI = △ CMK   ( c - g - c )

⇒ MK = MI

⇒ △ IMK cân tại M