Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác OBIC có
M là trung điểm của OI
M là trung điểm của BC
Do đó OBIC là hình bình hành
mà \(\widehat{BOC}=90^0\)
nên OBIC là hình chữ nhật
b: ta có: OBIC là hình chữ nhật
nên OI=BC
mà BC=AB
nên OI=AB
Hình bạn tự vẽ nha
a) Chứng minh OBIC là hình chữ nhật
Vì I đối xứng với O qua M nên
MO = MI
Xét tứ giác OBIC có :
MO = MI (cmt)
MB = MC ( Vì M là tđ BC )
mà OI giao BC tại M
=)) OBIC là hình bình hành (1)
Lại có ABCD là hình thoi
mà 2 đường chéo AC và BD giao nhau tại O
=)) góc AOB = góc COB = 90O (2)
Từ (1) và (2) =)) OBIC là hình chữ nhật
b) CM AB = OI
Vì OBIC là hình chữ nhật
=) OC = BI
mà OC = AO ( Vì ABCD là hình thoi )
=) BI = AO (3)
Lại có OBIC là hình chữ nhật
=)) OC // BI
mà O thuộc AC ( do O là tđ của AC )
=)) AC // BI hay AO // BI (4)
Từ (3) và (4) =)) ABIO là hình bình hành
=)) AB = OI
c) SABIO = ??? cm2
Vì ABCD là hình thoi
có 2 đường chéo AC và BD giao nhau tại O
=) O là tđ của AC
O là tđ của BD
mà AC = 6 cm
=) AO = OC = 6 : 2 = 3 ( cm )
Lại có BD = 9 cm
=) BO = OD = 9 : 2 = 4,5 (cm )
Xét tam giác BOC ( góc BOC = 90O ) có :
BC2 = OB2 + OC2 ( Theo định lý Pitago )
=) BC = \(\sqrt{3^2+\left(4,5\right)^2}\)
=) BC \(\approx5,4\left(cm\right)\)
Lại có BM = MC = BC chia 2 =) BM = 2,7 ( cm )
Vì ABCD là hình thoi =) BC = AB = 5,4 cm
Vì OBIC là hình chữ nhật có
2 đường chéo OI và BC giao nhau tại M
=) \(BM\perp OI\)
Vì ABOI là hbh ( cmt câu b )
=) SABOI = AB . BM = 2,7 x 5,4 = 14 , 58 (cm2 )
Vậy ta có ĐPCM
Chúc bạn học tốt =))
1) hình tự vẽ nhé
a) Vì ABCD là hình thoi (gt)
\(\Rightarrow AB=BC\left(đn\right)\)
\(\Rightarrow\Delta ABC\)cân tại B
Mà \(\widehat{B}=60^0\)
\(\Rightarrow\Delta ABC\)là tam giác đều
b) Vì \(\Delta ABC\)đều(cmt)\(\Rightarrow AB=BC=AC=a\)
Gọi O là giao điểm 2 đường chéo BD và AC
Vì ABCD là hình thoi (gt) \(\Rightarrow DB\perp AC\left(tc\right)\)
\(\Rightarrow BO\perp AC\)
Vì tam giác ABC đều mà trong tam giác ABC thì BO là đường cao ứng với cạnh AC
\(\Rightarrow BO\)là đường trung tuyến ứng vs cạnh AC(tc)
\(\Rightarrow O\)là trung điểm của AC
\(\Rightarrow AO=OC=\frac{1}{2}AC=\frac{1}{2}a\)
Áp dụng định lý Py-ta-go vào tam giác BOC vuông tại O ta được:
\(BO^2+OC^2=BC^2\)
\(BO^2+\frac{1}{4}a^2=a^2\)
\(BO^2=\frac{3}{4}a^2\)
\(\Rightarrow BO=\frac{\sqrt{3}}{2}a\)
Ta có: \(S_{ABC}=\frac{1}{2}BO.AC=\frac{1}{2}.\frac{\sqrt{3}a}{2}.a\)
\(=\frac{\sqrt{3}}{4}a^2\)
CMTT \(S_{ADC}=\frac{\sqrt{3}}{4}a^2\)
\(S_{ABCD}=S_{ADC}+S_{ABC}=\frac{\sqrt{3}}{2}a^2\)
a: Xét tứ giác MBNC có
MB//NC
NB//MC
Do đó: MBNC là hình bình hành
mà \(\widehat{BMC}=90^0\)
nên MBNC là hình chữ nhật
b: Ta có: MBNC là hình chữ nhật
nên MN=BC
mà BC=AB
nên MN=AB
Cô hướng dẫn nhé.
a.MN, PQ cùng song song và bằng một nửa AC, vậy MNPQ là hình bình hành.
b. Em nhìn đc nhé.
c. Cho các điểm như hình vẽ. Kẻ CE, PF vuông góc BD. Khi đó ta có CE = 2DF.
Ta có: \(\frac{S_{PNHG}}{S_{DCB}}=\frac{GH.PF}{\frac{1}{2}AC.CE}=\frac{GH.PF}{PN.CE}=\frac{PF}{CE}=\frac{1}{2}\)
Tương tự \(\frac{S_{MQGH}}{S_{ABD}}=\frac{1}{2}\Rightarrow\frac{S_{MNPQ}}{S_{ABCD}}=\frac{1}{2}\)
Từ đó ta tìm đc \(S_{ABCD}=32\)
Do ABCD là hình thoi nên hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường
Diện tích tam giác ABC là
Suy ra: BO.AC = 32
Diện tích hình thoi ABCD là:
Chọn đáp án B