K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

Do ABCD là hình thoi nên hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường

Diện tích tam giác ABC là

Bài tập: Diện tích hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: BO.AC = 32

Diện tích hình thoi ABCD là:

Bài tập: Diện tích hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án B

a: Xét tứ giác OBIC có

M là trung điểm của OI

M là trung điểm của BC

Do đó OBIC là hình bình hành

mà \(\widehat{BOC}=90^0\)

nên OBIC là hình chữ nhật

b: ta có: OBIC là hình chữ nhật

nên OI=BC

mà BC=AB

nên OI=AB

19 tháng 12 2016

Hình bạn tự vẽ nha

a) Chứng minh OBIC là hình chữ nhật

Vì I đối xứng với O qua M nên

MO = MI

Xét tứ giác OBIC có :

MO = MI (cmt)

MB = MC ( Vì M là tđ BC )

mà OI giao BC tại M

=)) OBIC là hình bình hành (1)

Lại có ABCD là hình thoi

mà 2 đường chéo AC và BD giao nhau tại O

=)) góc AOB = góc COB = 90O (2)

Từ (1) và (2) =)) OBIC là hình chữ nhật

b) CM AB = OI

Vì OBIC là hình chữ nhật

=) OC = BI

mà OC = AO ( Vì ABCD là hình thoi )

=) BI = AO (3)

Lại có OBIC là hình chữ nhật

=)) OC // BI

mà O thuộc AC ( do O là tđ của AC )

=)) AC // BI hay AO // BI (4)

Từ (3) và (4) =)) ABIO là hình bình hành

=)) AB = OI

c) SABIO = ??? cm2

Vì ABCD là hình thoi

có 2 đường chéo AC và BD giao nhau tại O

=) O là tđ của AC

O là tđ của BD

mà AC = 6 cm

=) AO = OC = 6 : 2 = 3 ( cm )

Lại có BD = 9 cm

=) BO = OD = 9 : 2 = 4,5 (cm )

Xét tam giác BOC ( góc BOC = 90O ) có :

BC2 = OB2 + OC2 ( Theo định lý Pitago )

=) BC = \(\sqrt{3^2+\left(4,5\right)^2}\)

=) BC \(\approx5,4\left(cm\right)\)

Lại có BM = MC = BC chia 2 =) BM = 2,7 ( cm )

Vì ABCD là hình thoi =) BC = AB = 5,4 cm

Vì OBIC là hình chữ nhật có

2 đường chéo OI và BC giao nhau tại M

=) \(BM\perp OI\)

Vì ABOI là hbh ( cmt câu b )

=) SABOI = AB . BM = 2,7 x 5,4 = 14 , 58 (cm2 )

Vậy ta có ĐPCM

Chúc bạn học tốt =)) ok

 

19 tháng 12 2016

Link nè bạn Câu hỏi của Ngoc Anh

2 tháng 1 2020

1) hình tự vẽ nhé

a) Vì ABCD là hình thoi (gt)

\(\Rightarrow AB=BC\left(đn\right)\)

\(\Rightarrow\Delta ABC\)cân tại B

Mà \(\widehat{B}=60^0\)

\(\Rightarrow\Delta ABC\)là tam giác đều

b) Vì \(\Delta ABC\)đều(cmt)\(\Rightarrow AB=BC=AC=a\)

Gọi O là giao điểm 2 đường chéo BD và AC

Vì ABCD là hình thoi (gt) \(\Rightarrow DB\perp AC\left(tc\right)\)

\(\Rightarrow BO\perp AC\)

Vì tam giác ABC đều mà trong tam giác ABC thì BO là đường cao ứng với cạnh AC

\(\Rightarrow BO\)là đường trung tuyến ứng vs cạnh AC(tc)

\(\Rightarrow O\)là trung điểm của AC

\(\Rightarrow AO=OC=\frac{1}{2}AC=\frac{1}{2}a\)

Áp dụng định lý Py-ta-go vào tam giác BOC vuông tại O ta được:

\(BO^2+OC^2=BC^2\)

\(BO^2+\frac{1}{4}a^2=a^2\)

\(BO^2=\frac{3}{4}a^2\)

\(\Rightarrow BO=\frac{\sqrt{3}}{2}a\)

Ta có: \(S_{ABC}=\frac{1}{2}BO.AC=\frac{1}{2}.\frac{\sqrt{3}a}{2}.a\)

                                               \(=\frac{\sqrt{3}}{4}a^2\)

CMTT \(S_{ADC}=\frac{\sqrt{3}}{4}a^2\)

\(S_{ABCD}=S_{ADC}+S_{ABC}=\frac{\sqrt{3}}{2}a^2\)

a: Xét tứ giác MBNC có 

MB//NC

NB//MC

Do đó: MBNC là hình bình hành

mà \(\widehat{BMC}=90^0\)

nên MBNC là hình chữ nhật

b: Ta có: MBNC là hình chữ nhật

nên MN=BC

mà BC=AB

nên MN=AB

5 tháng 1 2022

dạ cảm ơn ạ

15 tháng 7 2016

?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng g: ?o?n th?ng [B, C] ?o?n th?ng h: ?o?n th?ng [D, C] ?o?n th?ng i: ?o?n th?ng [D, A] ?o?n th?ng j: ?o?n th?ng [Q, P] ?o?n th?ng k: ?o?n th?ng [M, N] ?o?n th?ng l: ?o?n th?ng [N, P] ?o?n th?ng m: ?o?n th?ng [Q, M] ?o?n th?ng n: ?o?n th?ng [B, D] ?o?n th?ng r: ?o?n th?ng [P, F] ?o?n th?ng s: ?o?n th?ng [C, E] A = (-2.9, 1.48) A = (-2.9, 1.48) A = (-2.9, 1.48) B = (2.68, 1.4) B = (2.68, 1.4) B = (2.68, 1.4) D = (-4.16, 5.6) D = (-4.16, 5.6) D = (-4.16, 5.6) C = (3.5, 7.6) C = (3.5, 7.6) C = (3.5, 7.6) ?i?m M: Trung ?i?m c?a f ?i?m M: Trung ?i?m c?a f ?i?m M: Trung ?i?m c?a f ?i?m N: Trung ?i?m c?a g ?i?m N: Trung ?i?m c?a g ?i?m N: Trung ?i?m c?a g ?i?m P: Trung ?i?m c?a h ?i?m P: Trung ?i?m c?a h ?i?m P: Trung ?i?m c?a h ?i?m Q: Trung ?i?m c?a i ?i?m Q: Trung ?i?m c?a i ?i?m Q: Trung ?i?m c?a i ?i?m E: Giao ?i?m c?a p, n ?i?m E: Giao ?i?m c?a p, n ?i?m E: Giao ?i?m c?a p, n ?i?m F: Giao ?i?m c?a q, n ?i?m F: Giao ?i?m c?a q, n ?i?m F: Giao ?i?m c?a q, n ?i?m G: Giao ?i?m c?a j, n ?i?m G: Giao ?i?m c?a j, n ?i?m G: Giao ?i?m c?a j, n ?i?m H: Giao ?i?m c?a k, n ?i?m H: Giao ?i?m c?a k, n ?i?m H: Giao ?i?m c?a k, n

Cô hướng dẫn nhé.

a.MN, PQ cùng song song và bằng một nửa AC, vậy MNPQ là hình bình hành.

b. Em nhìn đc nhé.

c. Cho các điểm như hình vẽ. Kẻ CE, PF vuông góc BD. Khi đó ta có CE = 2DF.

Ta có: \(\frac{S_{PNHG}}{S_{DCB}}=\frac{GH.PF}{\frac{1}{2}AC.CE}=\frac{GH.PF}{PN.CE}=\frac{PF}{CE}=\frac{1}{2}\)

Tương tự \(\frac{S_{MQGH}}{S_{ABD}}=\frac{1}{2}\Rightarrow\frac{S_{MNPQ}}{S_{ABCD}}=\frac{1}{2}\)

Từ đó ta tìm đc \(S_{ABCD}=32\)