Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
Do đó: AIMK là hình chữ nhật
a: Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
Do đó: AIMK là hình chữ nhật
a: Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
Do đó: AIMK là hình chữ nhật
a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)
Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).
b) Áp dụng tính chất đối xứng trục ta có:
A H = A M , A 1 ^ = A 2 ^ và A K = A M , A 3 ^ = A 4 ^ .
Mà A 2 ^ + A 3 ^ = 900 Þ H, A, K thẳng hàng.
Lại có AH = AM = AK Þ H đối xứng với K qua A.
c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^ mà AM là đường trung tuyến.
Þ DABC vuông cân tại A.