K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Một bài toán cổ điển:

A B C D E F .

Chứng minh rằng \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\)

Thôi t chỉ liên tưởng thế thôi, vào bài nào :vv

A B C D E F H H

Cần chứng minh \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{3}\Leftrightarrow\frac{4}{AE^2}+\frac{4}{AF^2}=\frac{4}{3}\)

Ta có: AB//CF ( do ABCD là hình thoi ) \(\Rightarrow\frac{AB}{AE}=\frac{CF}{EF}\Leftrightarrow\frac{4}{AE^2}=\frac{CF^2}{EF^2}\)(theo định lý thales)

Tương tự ta cũng có: \(\frac{4}{AF^2}=\frac{CE^2}{EF^2}\)\(\Rightarrow\frac{4}{AE^2}+\frac{4}{AF^2}=\frac{CE^2+CF^2}{EF^2}\)

giờ chỉ cần chứng minh \(\frac{CE^2+CF^2}{EF^2}=\frac{4}{3}\Leftrightarrow EF=\frac{\sqrt{3\left(CE^2+CF^2\right)}}{2}\)(*)

Kẻ CH vuông góc với EF. Dễ dàng chứng minh góc CEF=45 và CFE=15

Trong tam giác vuông EHC:\(EH=CH.\cot45^0\)

Trong tam giác vuông FHC:\(FH=CH.\cot15\)\(\Rightarrow EF=CH.\left(\cot45^0+\cot15^0\right)\)

Tương tự ta có:\(CH=CE.\sin45^0\)\(\Rightarrow CE=\frac{CH}{\sin45^o}\)và \(CF=\frac{CH}{\sin15^o}\)

(*) được chứng minh khi \(4\left(\cot45+\cot15\right)^2=\frac{3}{\left(\sin45\right)^2}+\frac{3}{\left(\sin15\right)^2}\)

hình như nhầm ở đâu ý :< ứ gõ lại đâu 

23 tháng 6 2017

qggqgaqgq

8 tháng 9 2017

i don't know

17 tháng 1 2016

1) ta có góc BAF+góc DAE=90 ĐỘ

     góc DAK +góc DAE=90 ĐỘ

=> góc BAF= góc DAK 

XÉT 2 TAM GIÁC TRÊN THEO TRƯỜNG HỢP G.C.G

=>tam giác ABF=tam giác DAK

==>AK=AF  => tam giác AKF cân tại A

2)XÉT TAM GIÁC VUÔNG KCF CÓ I LÀ TRUNG ĐIỂM CỦA CẠNH HUYỀN KF nên A,F,K thuộc đường tròn đường kính KF (1)

TƯƠNG TỰ VỚI TAM GIÁC VUÔNG AKF ==> A,K,F cùng thuộc đường tròn đường kính KF (2)

TỪ (1) và (2) ==> điều cần chứng minh

3)vì tam giác AKF cân tại A ==> AI là trung tuyến đồng thời là đường cao 

==> AI vuông góc với KF  

DO ĐÓ góc AIF=90 độ

tương tự câu 2 xét vào 2 tam giác vuông AIF và ABF ==>điều cần chứng minh

đợi một tí thí nữa mk giải típ mệt quá

17 tháng 1 2016

sao dài thế

 

17 tháng 7 2018

a nối FO cắt AD ở K ta có: vì BF // KD và OB=OD => dễ dàng cm đc : tam giác OKD=tam giác OFB => BF=DK mà BF=HD=> H và K trùng nhau => F,O,H thẳng hàng

b dễ dàng chứng minh đc E,O,G cũng thẳng hàng => OE=OG và từ câu a => OF=OH

xét tam giác OEA và tam giác: OFB có góc OBF = góc OAE (gt)

                                              OB=OA,BF=AE 

=> tam giác OEA=tam giác OFB (cgc) => OE=OF

=> OE=OF=OH=OG=> E,F,G,H thuộc đường tròn tâm O bán kính OE

6 tháng 3 2016

dễ quá cần mk giải ko