Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/question/116802.html
( Bn tham khảo theo đường link trên nha )
a+b)xét tg ABC có AF=FB( gt)
AE=EC( gt)
=> EF là dg tb tg ABC=> EF//BC=> EFBC là hình thang
Ta có tg Cân ABC=> B=C=(180o-A):2=52,5o
Ta có EF//BC => EFB+B=180( hai góc trong cùng phía bù nhau)
=> EFB=180-B=180-52,5=127,50
Hình thang EFBC có B=C( tg ABC cân tại A)
=> EFBC là htc => EFB=FEC
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC