K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

may bn giai gap gium mik cam on may bn yeu nhiu😋😋😋😋

21 tháng 2 2020

A B C D M N H

a) \(S_{ABCD}=\frac{\left(3+7\right).4}{2}=20\left(cm^2\right)\)

b) Ta có : MA = MD

                NB = NC

\(\Rightarrow\)MN là đường trung bình của hình thang ABCD

\(\Rightarrow\)MN // BC (1)

Ta có : MD ⊥ BC

            NH ⊥ BC

\(\Rightarrow\)MD // NH (2)

Từ (1) và (2) suy ra : Tứ giác MNHD là hình bình hành

Mà : \(\widehat{MDH}=90^o\)

\(\Rightarrow\)Tứ giác MNHD là hình chữ nhật (dhnb)

Vì M là trung điểm của AD

\(\Rightarrow\)MD = \(\frac{1}{2}\)AD

\(\Rightarrow\)MD = 2 cm

Vì MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN=\frac{3+7}{2}=5cm\)

Vậy \(S_{MNHD}=MD.MN=2.5=10\left(cm^2\right)\)

a: Xét ΔACB và ΔEBC có

\(\widehat{ACB}=\widehat{EBC}\)

BC chung

\(\widehat{ABC}=\widehat{ECB}\)

Do đó: ΔACB=ΔEBC

b: Ta có: ΔACB=ΔEBC

nên AC=EB

=>BE=BD

hay ΔBED cân tại B

c: Ta có: ΔBED cân tại B

nên \(\widehat{BED}=\widehat{BDC}\)

=>\(\widehat{BDC}=\widehat{ACD}\)

d: Xét ΔACD và ΔBDC có

AC=BD

\(\widehat{ACD}=\widehat{BDC}\)

CD chung

DO đó: ΔACD=ΔBDC

e: Ta có: ΔACD=ΔBDC

nên \(\widehat{DAC}=\widehat{DBC}\)

f: Ta có: ΔACD=ΔBDC

nên \(\widehat{ADC}=\widehat{BCD}\)

=>ABCD là hình thang cân

14 tháng 9 2016

1.Vẽ BH vuông góc DC

Suy ra : BH=12 (vì AD vuông góc với DC và AD=12)

Tính HC : 

Áp dụng định lý Pi-ta-go ,ta có : 

BH2+HC2=BC2

122+x2=132

144+x2=169

x2=169-144

x2=25

=>x=5

Tính DC 

Ta có : DH+HC=DC        (vì AB = DH)

11+5=DC

15=DC

Hay : DC=15

Tính AC 

Áp dụng định lý pi-ta-go , ta có :

AD2+DC2=AC2

122+162=x2

144+256=x2

400=x2

=>x=20

16 tháng 9 2016

2. Vẽ ch vuông góc ab tại h --> adch là hbh --> ch = 8 cm

ta có: abc + cbh = 180 ( kb) --> cbh= 45 mà chb = 90 --> bch là tam giác vuông cân --> ch= hb = 8cm

ta có ab+ bh = ah --> 7+8+ 15 cm Mà ah = dc ( adch là hbh)--> dc= 15 cm

áp dụng đl pytago ta có tam giác adc vuông tại d --> ad2+dc2= ac2

ac2= 64+225=289

Vậy ac = 17 cm

a: Xét ΔAOB và ΔCOD có

góc AOB=góc COD

góc OAB=góc OCD
Do đo: ΔAOB đồng dạng với ΔCOD

Suy ra: AB/CD=OA/OC=1/2

=>OC=2OA

b: Xét ΔFCD có AB//CD

nên AB/CD=FA/FD=FB/FC

=>FA/FD=FB/FC=1/2

=>A là trung điểm của FD;B là trung điểm của FC

Xét ΔFDC có

CA là đường trung tuyến

DB là đường trung tuyến

CA cắt DB tại O

Do đó: O là trọng tâm của ΔFDC