Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt AI = x (cm) , (x>0) , IC = y (cm) , (y>0)
Ta có : \(2y^2=18,2015\Rightarrow y=\sqrt{\frac{18,2015^2}{2}}\)
Mặt khác : \(x^2+DI^2=AD^2=14,2014^2\) ; \(y^2+DI^2=CD^2=18,2015^2\)
\(\Rightarrow y^2-x^2=18,2015^2-14,2014^2\Rightarrow x=\sqrt{y^2-18,2015^2+14,2014^2}\)
Từ đó dễ dàng giải tiếp bài toán.
góc BDC+góc BCD=90 độ
=>1/2*góc ADC+góc BCD=90 độ
=>3/2*góc BCD=60 độ
=>góc BCD=60 độ
=>góc BDC=30 độ
Xét ΔBDC vuông tại B có sin BDC=BC/CD
=>BC/8=1/2
=>BC=4cm
góc ABD=góc BDC
góc BDC=góc ADB
=>góc ABD=góc ADB
=>AB=AD=BC=4cm
C=8+4+4+4=20cm
Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!
Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.
Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:
$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$
Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:
$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)
⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$
⇒ $\(CH=DK=\dfrac{120}{13}\)$
Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:
$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$
Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$
Diện tích hình thang này là 1 hằng số \(S=\dfrac{1}{2}\left(m+n\right)\sqrt{mn}\) nên không thể có giá trị lớn nhất hay nhỏ nhất gì đó được
Theo như đề bài thì m; n là hằng số cố định chứ không phải là các số thay đổi nên ta ko thể áp dụng BĐT cho chúng (chỉ áp dụng BĐT để tìm min-max trong trường hợp chúng là các số thay đổi).
a) DDBC vuông có B C D ^ = 2 B D C ^ nên A D C ^ = B C D ^ = 60 0 và D A B ^ = C B A ^ = 120 0
b) Tính được DC = 2.BC = 12cm, suy ra PABCD = 30cm.
Hạ đường cao BK, ta có BK = 3 3 c m .
Vậy SABCD = 27 3 c m 2