Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔKCE có
\(\widehat{ABE}=\widehat{KCE}\)
BE=CE
\(\widehat{AEB}=\widehat{KEC}\)
Do đó: ΔABE=ΔKCE
a) -Qua B kẻ đường thẳng vuông góc với DC tại E.
-Xét tứ giác ABED: \(\widehat{ADE}=\widehat{BAD}=\widehat{DEB}=90^0\)
\(\Rightarrow\)ABED là hình chữ nhật nên \(AD=BE\); \(AB=ED=4\left(cm\right)\)
-Xét △BEC vuông tại E:
\(BE^2+EC^2=BC^2\) (định lí Py-ta-go)
\(\Rightarrow BE^2+\left(DC-DE\right)^2=BC^2\)
\(\Rightarrow BE^2+\left(9-4\right)^2=13^2\)
\(\Rightarrow BE^2=13^2-5^2=144\)
\(\Rightarrow BE=AD=12\left(cm\right)\)
b) \(S_{ABCD}=\dfrac{AD.\left(AB+CD\right)}{2}=\dfrac{12.\left(4+9\right)}{2}=78\left(cm^2\right)\)
c) -Đề sai.
a) CE = BC – BE = 25 – 9 =16 = CD
Tam giác ABE cân tại B => góc BAE = góc BEA
Tam giác CED cân tại C => góc CED = góc CDE
=> góc BEA + góc CED
= góc BAE + góc CDE
= 90 độ - góc EAD + 90 độ - góc ADE
= 180 độ - (góc EAD + góc ADE)
=180 độ - (180 độ - góc AED)
=góc AED
=> góc BEA + góc CED=góc AED
Mà góc BEA + góc CED + góc AED = 180 độ
=> góc BEA + góc CED=góc AED = 90 độ