Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi tia phân giác góc C là CM và N là trung điểm của BC.
Do MN là đường trung bình của hình thang ABCD nên AB // MN // DC.
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Do MC là tia phân giác góc C nên \(\widehat{MND}=\widehat{NCM}\).
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Vậy tam giác NMC cân tại N hay MN = NC.
mà N là trung điểm của BC nên BN = NC.
Suy ra BN = MN = NC. Vậy tam giác MBC cân tại M.
b) Theo tính chất của đường trung bình của tam giác 2MN = AB + DC.
Mà BC = BN + NC = 2NC = 2MN.
Suy ra BC = AB + CD.
a, E là trung điểm của AB (gt) \(\Rightarrow AE=EB=\frac{1}{2}AB\)
\(AB=2AD\left(gt\right)\Rightarrow AD=\frac{1}{2}AB\)
Do đó: \(AE=AD\Rightarrow\Delta AED\) cân tại A \(\Rightarrow\widehat{AED}=\widehat{ADE}\) (tính chất tam giác cân) (1)
ABCD là hình bình hành(gt) \(\Rightarrow AB//CD\Rightarrow\widehat{AED}=\widehat{EDC}\) ( 2 góc so le trong ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ADE}=\widehat{EDC}\) mà tia DE nằm giữa 2 tia DA,DC \(\Rightarrow\)AE là tia phân giác của \(\widehat{ADC}\)
Vậy tia phân giác của \(\widehat{ADC}\) đi qua trung điểm E của AB.
b, ABCD là hình bình hành(gt) \(\Rightarrow AB=DC\)
F là trung điểm của DC (gt) \(\Rightarrow FD=FC=\frac{1}{2}DC=\frac{1}{2}AB=AD\)
Do đó: \(\Delta ADF\) cân tại D
\(AB//DC\left(cmt\right)\Rightarrow\widehat{BAD}+\widehat{ADF}=180^0\)
\(\Rightarrow120^0+\widehat{ADF}=180^0\) (vì \(\widehat{BAD}=120^0\) )
\(\Rightarrow\widehat{ADF}=60^0\)
Ta có: \(\Delta ADF\) cân tại D và \(\widehat{ADF}=60^0\left(cmt\right)\Rightarrow\Delta ADF\) đều
\(\Rightarrow AF=DF=AD\) \(\left(ĐN\right)\)
Mặt khác, DF = 1/2 DC nên AF = 1/2 DC
\(\Delta ADC\)có trung tuyến AF = 1/2 DC nên \(\Delta ADC\)vuông tại A
Vậy \(AD\perp AC.\)
Mong bạn hiêu bài và chúc bạn học tốt.
Theo đề ta suy ra MD là khoảng cách từ M đến DC, ME là khoảng cách từ M đến EC
Mà CM là phân giác góc ECD nên ME=MD=MA
Tam giác AED có trung tuyến bằng nửa cạnh tương ứng ---> tam giác AED vuông tại E
Vậy góc AED là 90 độ nha