Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\overrightarrow{MN}+\overrightarrow{PQ}=\overrightarrow{MP}+\overrightarrow{PN}+\overrightarrow{PM}+\overrightarrow{MQ}=\overrightarrow{MQ}-\overrightarrow{NP}\)
b)\(\overrightarrow{MQ}+\overrightarrow{NP}=\overrightarrow{MF}+\overrightarrow{FQ}+\overrightarrow{NF}+\overrightarrow{FP}=2\overrightarrow{EF}\)
(vì vecto FM+FN=2FE=>-(FM+FN)=-2FE=>MF+NF=2EF)
có góc ABC là góc tù vì 360-90-90-60=120
vậy CM \(\ge\)BC
vậy độ dài đoạn CM hay đọ dài vecto CM nhỏ nhất khi bằng BC
khi đó min(CM)=?
từ B hạ chân đường vuống góc xuống CD
khi đó ta dễ tính ra được BC=2a
từ C hà đường vuông góc tới AB
khi đó \(|\overrightarrow{CM}|^2\)=CM^2 = CH^2 + HM^2
vì CH không đổi nên ta không tính đến nó
có HM bé hơn hoặc bằng HA
vậy AC>= CM
vậy max(CM)=AC=\(2\sqrt{2}a\)
Chọn D.
Phương án A: = AB.DC.cos00
= 8a2 nên loại A.
Phương án B: suy ra nên loại B.
Phương án C: suy ra nên loại C.
Phương án D: không vuông góc với suy ra nên chọn D.
\(\overrightarrow{EM}+\overrightarrow{EN}+\overrightarrow{EP}+\overrightarrow{EQ}\)
\(=\overrightarrow{EN}+\overrightarrow{EQ}\)(1)
\(\overrightarrow{PN}+\overrightarrow{MQ}\)
\(=\overrightarrow{PE}+\overrightarrow{EN}+\overrightarrow{ME}+\overrightarrow{EQ}\)
\(=\overrightarrow{EN}+\overrightarrow{EQ}\)(2)
Từ (1) và (2) suy ra \(\overrightarrow{EM}+\overrightarrow{EN}+\overrightarrow{EP}+\overrightarrow{EQ}=\overrightarrow{PN}+\overrightarrow{MQ}\)