K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAQP có 

A là trung điểm của MQ

B là trung điểm của MP

Do đó: AB là đường trung bình của ΔAQP

Suy ra: AB//QP

Xét hình thang MNPQ có 

A là trung điểm của MQ

C là trung điểm của NP

Do đó: AC là đường trung bình của hình thang MNPQ

Suy ra: AC//QP//MN

3 tháng 10 2021

Vẽ mối hình thôi à bn

3 tháng 10 2021

đúng rồi bạn

a: Xét hình thang MNPQ có 

A là trung điểm của MQ

B là trung điểm của NP

Do đó: AB là đường trung bình của hình thang MNPQ

Suy ra: AB//MN//PQ

Xét ΔQMN có AI//MN

nên \(\dfrac{AI}{MN}=\dfrac{AQ}{QM}=\dfrac{1}{2}\left(1\right)\)

Xét ΔPMN có KB//MN

nên \(\dfrac{KB}{MN}=\dfrac{1}{2}\left(2\right)\)

Từ (1) và (2) suy ra AI=KB

a: Xét hình thang MNPQ có 

I là trung điểm của MQ

IK//MN//QP

Do đó: K là trung điểm của NP

b: Xét hình thang MNPQ có 

I là trung điểm của MQ

K là trung điểm của NP

Do đó: IK là đường trung bình của hình thang MNPQ 

Suy ra: \(IK=\dfrac{MN+PQ}{2}=6.5\left(cm\right)\)

9 tháng 10 2021

Giải thích các bước giải:

a/ Trong ΔABCΔABC có N,PN,P lần lượt là trung điểm của BC,ACBC,AC

⇒ NPNP là đường trung bình ΔABCΔABC

⇒ NP//AB//CDNP//AB//CD (1)

Trong ΔBCDΔBCD có N,QN,Q lần lượt là trung điểm của BC,BDBC,BD

⇒ NQNQ là đường trung bình ΔBCDΔBCD

⇒ NQ//CD//ABNQ//CD//AB (1)

Trong hình thang ABCDABCD có M,NM,N lần lượt là trung điểm của AD,BCAD,BC

⇒ MNMN là đường trung bình hình thang ABCDABCD

⇒ MN//AB//CDMN//AB//CD (3)

Từ (1) (2) và (3) suy ra: M,N,P,QM,N,P,Q thằng hàng

Hay M,N,P,QM,N,P,Q nằm trên một đường thẳng

b/ Vì MNMN là đường trung bình thang ABCDABCD

nên MN=AB+CD2=a+b2MN=AB+CD2=a+b2

Ta có: NPNP là đường trung bình ΔABCΔABC

⇒ NP=AB2=a2NP=AB2=a2

Ta lại có: NQNQ là đường trung bình ΔBCDΔBCD

⇒ NQ=CD2=b2NQ=CD2=b2

Vì a>b nên PQ=NP−NQ=a2−b2=a−b2PQ=NP−NQ=a2−b2=a−b2

c/ Ta có: MN=MP+PQ+QNMN=MP+PQ+QN

⇒a+b2=3.a−b2⇒a+b2=3.a−b2

⇒a+b=3a−3b⇒a+b=3a−3b

⇒3a−a=b+3b⇒3a−a=b+3b

⇒2a=4b⇒2a=4b

⇒a=2b⇒a=2b

Chúc bạn học tốt !!!

^HT^

9 tháng 10 2021

trả lời :

undefined

^HT^