Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định nghĩa, tính chất và giả thiết của hình thang cân ta có:
⇒ Δ ADH = Δ BCK
(trường hợp cạnh huyền – góc nhọn)
⇒ DH = CK (cặp cạnh tương ứng bằng nhau)
Vậy DH = CK. (đpcm)
Xét hai tam giác vuông AHD và BKC:
∠ (AHD) = ∠ (BKC) = 90 0
AD = BC (tính chất hình thang cân)
∠ C = ∠ D (gt)
Suy ra: ∆ AHD = ∆ BKC (cạnh huyền, góc nhọn)
⇒ HD = KC
Xét ΔAHD và ΔBKC có:
\(\widehat{AHD}=\widehat{AKC}=90\left(gt\right)\)
AD=BC(gt)
\(\widehat{D}=\widehat{C}\left(gt\right)\)
=>ΔAHD=ΔBKC (cạnh huyền-góc nhọn)
=>DH=CK
Xét tam giác AHD vuông tại H và tam giác BKC vuông tại K
Ta có: AD= BC (gt)
Góc D = góc C
=> tam giác AHD= tam giác BKC (cạnh huyền- góc nhọn)
=> DH= CK ( 2 cạnh tương ứng)
xét tam giác AHD và tam giác BKC có:
AD = BC (gt)
góc ADH = góc BCK (gt)
góc AHD = góc AKC = 900
=> tam giác ... = tam giác .... (ch-gn)
=> DH = CK (cạnh tương ứng)
t i c k nha!! 463745768658897697696789768568654
Có hình thang ABCD cân
⇒AD=BC ; ∠ADC=∠BCD
Có AH⊥DC
⇒∠AHD=∠AHC
Có BK⊥DC
⇒∠BKC=∠BKD
* Xét △AHD(∠AHD=90) và ΔBKC(∠BKC=90) có
AD=BC(c/m trên)
∠ADH=∠BCK
⇒△AHD=ΔBKC( cạnh huyền-góc nhọn)
⇒DH=KC(2 cạnh tương ứng)(đpcm)
Xét hình thang cân ABCD ( AB // CD )
\(\Rightarrow\hept{\begin{cases}\widehat{D}=\widehat{C}\\AD=BC\end{cases}\left(t/c\right)}\)
Xét \(\Delta ADH=\Delta BCK\)
\(\hept{\begin{cases}\widehat{AHD}=\widehat{BKC}\left(=90^o\right)\\AD=BC\left(cmt\right)\\\widehat{D}=\widehat{C}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ADH=\Delta BCK\) ( ch - gn )
\(\Rightarrow AH=BK\) ( 2 cạnh tương ứng )
b) Vì \(\Delta ADH=\Delta BCK\left(cmt\right)\)
\(\Rightarrow DK=CK\) ( 2 cạnh tương ứng )
Chúc bạn học tốt !!!
\(a,\widehat{D}=\widehat{C}=70^0\left(t/c.hthang.cân\right)\\ AB//CD\Rightarrow\widehat{A}+\widehat{D}=180^0\left(2.góc.trong.cùng.phía\right)\Rightarrow\widehat{A}=110^0\\ \widehat{A}=\widehat{B}=110^0\left(t/c.hthang.cân\right)\\ b,\left\{{}\begin{matrix}AD=BC\left(t/c.hthang.cân\right)\\\widehat{AHD}=\widehat{BKC}\left(=90^0\right)\\\widehat{D}=\widehat{C}\left(cm.trên\right)\end{matrix}\right.\Rightarrow\Delta AHD=\Delta BKC\left(ch-gn\right)\Rightarrow DH=CK\)