Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD và tam giác BAC có
AB chung
goc BAD = góc ABC ( ABCD là hình thang cân )
AD=BC ( ABCD là hình thang cân )
Vậy tam giác ABD = tam giác BAC ( c-g-c)
=> góc ABD = góc BAC => tam giác AOB cân tại O
b)
Ta có KD=KC=> K nằm trên đường trung trực DC (*)
Ta lại có :
OD=DB-OB
OC=AC-AO
mà BD=AC ( 2 đường chéo hình thang cân ABCD )
OB=AO (tam giác AOB cân tại O)
=> OD=OC => O nằm trên đường trung trực DC (**)
Xét tam giác IAD và tam giác IBC có
AI=IB( I là trung điềm AB)
góc IAD = góc IBC ( ABCD là hình thang cân)
AD=AB ( ABCD là hình thang cân)
Vậy tam giác IAD = tam giác IBC(c-g-c)
=> ID=IC=> I nằm trên đường trung trực DC (***)
Từ (*)(**)(***)=> I,O,K thẳng hàng
nha . Chúc bạn học tốt
1]
a]
Ta có:
AI/IM = AB/DM
BK/KM = AB/MC
Do DM =MC
=> AI/IM = BK/KM
=> IK//AB
b]
IE/DM = AI/AM
KF/MC = BK/BM
Mà AI/AM = BK/BM (do IK//AB)
=> IE/DM = KF/MC mà DM=MC
=> IE = KF
2]
a}
Ta có:
AE/EK = AB/DK
BF/FI = AB/CI
Do ABID và ABCK là h..b.hành
=> CK=DI =AB
=> DK = CI = CD -AB
=> AE/EK = NF/FI
=> EF//AB
b}
Ta có EF/CK =AF/AC = AB/CD
=> EF.CD = CK.AB = AB^2 (do CK =AB)
3]
a}
Ta có:
MB/MF = MC/MA (Xét BC//AF)
ME/MB = MC/MA (Xét CE//AB)
=> MB/MF = ME/MB
=> MB^2 = ME.MF
b}
BM/MF = MC/AC (Xét BC//AF)
BM/ME = AM/AC (Xét CE//AB)
=> BM/MF + BM/ME = MC/AC + AM/AC =1
=> BM/MF + BM/ME =1
=> 1/BF+1/BE=1/BM
a: Xét ΔACD và ΔBDC có
AC=BD
AD=BC
CD chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: OC+OA=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB