Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AB//CD (gt) -> \(\widehat{ABD}=\widehat{BDE}\) ( 2 góc so le trong )
Xét \(\Delta\)ABI và \(\Delta\)EDI có:
\(\widehat{ABD}=\widehat{BDE}\left(cmt\right)\)
DI=IB (I là trung điểm của BD)
\(\widehat{AIB}=\widehat{DIE}\) ( 2 góc đối đỉnh )
=> \(\Delta\)ABI = \(\Delta\)EDI ( g.c.g )
=> AB = DE ( 2 cạnh tương ứng ) (1)
Mà AB//DE ( AB//DC, E thuộc DC ) (2)
Từ (1) và (2) -> ABED là hình bình hành
-> AE cắt DB tại trung điểm mỗi đường ( tính chất hình bình hành ) mà I là trung điểm của BD
-> I là trung điểm AE
Chúc bạn học tốt!!!
+) Vì ABCD là hình thang
\(\Rightarrow AB//CD\)
\(\Rightarrow AB//DE\)
\(\Rightarrow\widehat{A}_1=\widehat{E}_1\)( so le trong)
và \(\widehat{D_1=\widehat{B_1}}\)( slt )
Xét \(\Delta AIB\)và \(\Delta EIB\)có :
\(\widehat{A}_1=\widehat{E_1}\)( cmt)
\(BI:\)Cạnh chung
\(\widehat{B_1}=\widehat{D_1}\)(cmt )
Do đó : \(\Delta AIB=\Delta EIB\left(g.c.g\right)\)
\(\Rightarrow IA=IB\)( cặp cạnh tương ứng ) (*)
+) Vì AB // CD ( GT )
=> AB // EC
=> ABCE là hình thang
Xét \(\Delta BEC\)và \(\Delta BEA\)có :
\(\widehat{E_2}=\widehat{B_{1,2}}\)( soletrong)
\(BE:\)cạnh chung
\(\widehat{E_3}=\widehat{B_3}\)(sl)
Do đó : \(\Delta BEC=\Delta BEA\left(g.c.g\right)\)
\(\Rightarrow BC=BA\)( 2 cạn tương ứng ) (1)
Mà \(BC=BE\)( GT ) (2)
từ (1) và (2)
\(\Rightarrow BA=BE\)
\(\Rightarrow\Delta ABE\)Cân
Xét \(\Delta\)cân \(ABE\)có :
\(IA=IE\)( chứng minh trên ) (1)
\(BI\perp AE\)( vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường cao ) (2)
Từ (1) và (2)
=> Hai điểm A và E đối xứng với nhau qua I ( đpcm)
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)