Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADK vuông tại K và ΔBCH vuông tại H có
AD=BC
\(\widehat{D}=\widehat{C}\)
Do đó: ΔADK=ΔBCH
Suy ra: DK=CH
a) Xét ΔDKA và ΔCHB có:
∠AKD = ∠BHC = 900 (vì AK và BH là các đường cao)
AD = BC (cạnh bên của hình thang cân)
∠ADK = ∠BCH ( định nghĩa hình thang cân)
=> ΔDKA = ΔCHB (cạnh huyền - góc nhọn)
=> DK = CH (2 cạnh tương ứng)
Vậy DK = CH
b) Tứ giác ABHK là hình thang có 2 cạnh bên AK và BH song song nên AB = KH = 3 cm
Ta có: DK + KH + HC = 13
Mà DK = CH
=> 2HC + 3 = 13
=> 2HC =10
=>HC =5 (cm)
Áp dụng định lí Py-ta-go cho ΔBHC vuông tại H được:
BC2 = HC2 + BH2
=> BH2 = BC2 - HC2
=> BH2 = 132 - 52
=> BH2 = 144
=> BH = 12 (cm) (vì BH >0)
Vậy BH = 12 cm
Bài 1:
Xét ΔABC và ΔBAD có
AB chung
BC=AD
AC=BD
Do đó: ΔABC=ΔBAD
Suy ra: \(\widehat{BAC}=\widehat{ABD}\)
hay \(\widehat{EAB}=\widehat{EBA}\)
hay ΔEAB cân tại E
Bài 1:
Xét ΔABC và ΔBAD có
AB chung
BC=AD
AC=BD
Do đó:ΔABC=ΔBAD
Suy ra: \(\widehat{BAC}=\widehat{ABD}\)
hay \(\widehat{EAB}=\widehat{EBA}\)
hay ΔEAB cân tại E
Bài 2:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
moi nguoi giai ho minh voi