K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

Ta có

\(\widehat{A}+\widehat{D}=180^o\) (Hai dt // bị cắt bởi 1 đường thẳng tạo thành 2 góc trong cùng phía bù nhau)

\(\widehat{DAE}=\frac{\widehat{A}}{2}\)

\(\widehat{ADE}=\frac{\widehat{D}}{2}\)

\(\Rightarrow\widehat{DAE}+\widehat{ADE}=\frac{\widehat{A}+\widehat{D}}{2}=\frac{180^o}{2}=90^o\)

Xét tg AED có

\(\widehat{DAE}+\widehat{ADE}=90^o\Rightarrow\widehat{AED}=90^o\Rightarrow AE\perp DE\)

12 tháng 8 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giả sử hình thang ABCD có AB // CD

* Ta có: ∠ A 1 =  ∠ A 2 = 1/2 ∠ A (vì AE là tia phân giác của góc A)

∠ D 1 =  ∠ D 2 = 1/2  ∠ D ( Vì DE là tia phân giác của góc D)

A + D = 180 0  (2 góc trong cùng phía bù nhau)

Suy ra: ∠ A 1 +  ∠ D 1 = 1/2 ( ∠ A +  ∠ D) = 90 0

* Trong ΔAED, ta có:

∠ (AED) +  ∠ A 1 +  ∠ D 1 =  180 0  (tổng 3 góc trong tam giác)

⇒  ∠ (AED) =  180 0  – ( ∠ A 1 +  ∠ D 1 ) =  180 0  -  90 0  =  90 0

Vậy AE ⊥ DE.

16 tháng 7 2016

các bạn giải nhanh nhé mình đang rất gấp

29 tháng 6 2017

Hình thang

nên \(\widehat{A}_1+\widehat{D}_1=90^0\). \(\Delta ADE\)\(\widehat{A}_1+\widehat{D}_1=90^0\) nên \(\widehat{AED}=90^0\). Vậy \(AE\perp DE\)

2 tháng 9 2018

Hình thang

Giải sử hình thang ABCD có AB// CD

\(\widehat{A_1}=\widehat{A_2}=\dfrac{1}{2}\widehat{A}\left(gt\right)\)

\(\widehat{D_1}=\widehat{D_2}=\dfrac{1}{2}\widehat{D}\left(gt\right)\)

\(\widehat{A}+\widehat{D}=180^o\) (hai góc trong cùng phía bù nhau)

Suy ra:

\(\widehat{A}_1+\widehat{D_1}=\dfrac{1}{2}\left(\widehat{A}+\widehat{D}\right)=\dfrac{1}{2}.180^o=90^o\)

Trong ∆ AED ta có :

\(\widehat{AED}+\widehat{A_1}+\widehat{D_1}=180^o\) (tổng ba góc trong 1 tam giác)

\(\Rightarrow\widehat{AED}=180^o-\left(\widehat{A_1}+\widehat{D_1}\right)=180^o-90^o=90^o\)

\(\Rightarrow AE\perp ED\)

Vậy trong hình thang các tia phân giác của hai góc nhọn kề một cạnh bên vuông góc với nhau

29 tháng 8 2016

1 ) 

Xét hình thang ABCD (AB//CD) 

góc A + góc D =180 độ (2 góc trong cùng phía )

 góc B +góc C =180 độ
- Nếu góc A tù (> 90độ) => góc D nhọn 
- Nếu góc B tú => góc C nhọn 
=>  hình thang có nhiều nhất 2 góc tù, có nhiều nhất 2 góc nhọn

2 ) Giả sử ABCD là hình thang có đáy AB//CD 
Khi đó ta có góc A + góc D bằng 180 độ (2 góc kề 1 cạnh bên hình thang bù nhau) (Hoặc bạn hiểu là 2 góc trong cùng phía bù nhau đó) 
Vậy tia phân giác góc A nên bằng nửa góc A 
TIa phân giác góc D bằng nửa góc D 
Vậy Cộng 2 góc tia phân giác đó bằng 180độ chia 2 bằng 90 độ

29 tháng 8 2016

2,

Giả sử ABCD là hình thang có đáy AB//CD 
Khi đó ta có góc A + góc D bằng 180 độ (2 góc kề 1 cạnh bên hình thang bù nhau) (Hoặc bạn hiểu là 2 góc trong cùng phía bù nhau đó) 
Vậy tia phân giác góc A nên bằng nửa góc A 
TIa phân giác góc D bằng nửa góc D 
Vậy Cộng 2 góc tia phân giác đó bằng 180 độ chia 2 bằng 90 độ

12 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath

21 tháng 8 2020

Cho tứ giác ABCD có các tia phân giác góc A và góc B vuông góc với nhau 

CM: tứ giác ABCD là hình thang

HOK TOT

12 tháng 3 2018

a) Theo đề bài ta có: \(\widehat{DAF}+\widehat{ADF}=\frac{\widehat{DAB}+ADC}{2}=\frac{180^o}{2}=90^o\)

Xét tam giác AFD có \(\widehat{DAF}+\widehat{ADF}=90^o\) nên \(\widehat{AFD}=90^o\)

Hay tam giác AFD vuông tại F.

Gọi E là trung điểm AD.

Xét tam giác vuông ADF có FE là trung tuyến ứng với cạnh huyền nên EF = AD/2

Lại có do F là trung điểm BC; E là trung điểm AD nên EF là đường trung bình hình thang.

Từ đó suy ra \(EF=\frac{AB+BC}{2}\)

Vậy nên AD = AB + BC.

b) Giả sử AD = AE + ED.

Gọi E là trung điểm AD. Do AD = AB + CD nên FE = (AB + DC)/2

Ta có E là trung điểm AD. Vậy nên EF là đường trung bình hình thang hay hay Flà trung điểm BC.

20 tháng 8 2020

Cô vẽ hình cho con với dc ko ạ