K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Xét ΔADC có OM//DC

nen OM/DC=AM/AD(1)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(2)

Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)

Từ (1) (2)và (3) suy ra OM=ON

Bài 2: 

Xét ΔADC có OM//DC

nen OM/DC=AM/AD(1)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(2)

Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)

Từ (1) (2)và (3) suy ra OM=ON

Bài 2: 

Xét ΔADC có OM//DC

nen OM/DC=AM/AD(1)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(2)

Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)

Từ (1) (2)và (3) suy ra OM=ON

5 tháng 12 2017

Trong ΔDAB, ta có: OM // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (1)

Trong ΔCAB, ta có: ON // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (2)

Trong ΔBCD, ta có: ON // CD (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí Ta-lét) (3)

Từ (1), (2) và (3) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy: OM = ON

6 tháng 2 2022

c. -Xét △ADC có: OM//DC (gt).

\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)

\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).

-Xét △BDC có: ON//DC (gt).

\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)

\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)

-Xét △ABO có: AB//DC (gt).

\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)

-Từ (1), (2),(3) suy ra:

\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)

\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)

\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

a: Xét ΔAOB và ΔCOD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB∼ΔCOD

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

hay \(OA\cdot OD=OB\cdot OC\)

b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)

\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)