Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
ABCD là hình thang cân \(=>\angle\left(CAB\right)=\angle\left(DBA\right)\)
=>2 góc ngoài cũng bằng nhau
=>2 tia phân giác 2 góc ngoài cũng tạo thành các góc bằng nhau
\(=>\angle\left(EAB\right)=\angle\left(FBA\right)\)=>ABFE là hình thang cân
b,từ 2 điểm A,B hạ các đường cao AM,BN
chứng minh được AMNB là h chữ nhật
=>MN=AB=6cm
dễ chứng minh được tam giác ADM=tam giác BCN(ch-cgn)
\(=>DM=CN=\dfrac{1}{2}\left(DC-MN\right)=\dfrac{1}{2}\left(12-6\right)=3cm\)
pytago=>\(BN=\sqrt{BC^2-NC^2}=\sqrt{5^2-3^2}=4cm\)
\(=>SABCD=\dfrac{BN\left(AB+CD\right)}{2}=........\)thay số tính
a: góc EAD+góc EDA
=1/2góc BAD+1/2góc ADC
=1/2x180=90 độ
=>góc AED=90 độ
góc FBC+góc FCB=1/2góc ABC+1/2góc BCD=1/2x180=90 độ
=>góc BFC=90 độ
b: Xét ΔDAP có góc DAP=góc DPA(=góc BAP)
nên ΔDAP cân tại D
=>DA=DP
Xét ΔCBP có góc CPB=góc CBP
nênΔCBP cân tại C
=>CB=CP
=>AD+BC=CD