Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tg HDC có : P là t/đ của HD (gt) và Q là t/đ của HC(gt) => PQ là đg trung bình của tg HDC => PQ//DC và PQ=1/2.DC
xét tg ABQP có : AB//PQ (cùng // DC) và AB=PQ (cùng = 1/2.DC) => tg ABQP là hbh
b) Ta có: PQ// DC (c/m câu a) , DC vuông góc vs AD(vì ^D=90) => QP vuông góc vs AD
xét tg AQD có: DH vuông góc vs AC(gt); QP vuông góc vs AD (cmt) => P là trực tâm của tg AQD=> AP vuông góc vs DQ
Mà AP//BQ (vì tg ABQP là hbh) nên BQ vuông góc vs DQ => ^BQD =90
a: Xét ΔHDC có
N là trung điểm của HD
M là trung điểm của HC
Do đó: NM là đường trung bình của ΔHDC
Suy ra: NM//DC và \(NM=\dfrac{CD}{2}\)
mà AB//DC và \(AB=\dfrac{CD}{2}\)
nên NM//AB và NM=AB
b: Xét tứ giác ABMN có
AB//NM
AB=NM
Do đó: ABMN là hình bình hành
a) Ta có : M, N lần lượt là trung điểm của HC, HD => MN là đường trung bình của tam giác HDC => MN // CD và MN = 1/2 CD
MN = 1/2 CD => 2MN = CD, mà AB = CD (gt) => MN = AB (đpcm)
b) Hình trhang ABCD vuông tại A và D (gt) => AB // CD, mà MN // CD (cmt) nên AB // MN
Mà AB = MN (cmt) nên ABMN là hình bình hành (đpcm)
CHỌN giùm mình nha !!!!!!!!!!!!!!!!!!!!!