Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AIHN có \(\widehat{AIH}=\widehat{ANH}=\widehat{NAI}=90^0\)
nên AIHN là hình chữ nhật
Suy ra: AH=IN
b: Xét ΔAHK có
AI là đường cao
AI là đường trung tuyến
Do đo: ΔAHK cân tại A
mà AI là đường cao
nên AI là tia phân giác của góc HAK(1)
Xét ΔAHE có
AN là đường cao
AN là đường trung tuyến
Do đo: ΔAHE cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{KAE}=2\cdot90^0=180^0\)
=>K,A,E thẳng hàng
mà AE=AK
nên A là trung điểm của KE
#)Giải :
(Hình bạn tự vẽ nhé :v)
AB cắt CD tại K
Theo bổ đề hình thang \(\Rightarrow\) K,E,F thẳng hàng
Kẻ EN//AB ta được hình bình hàng ABEN
\(\Rightarrow\) BE = AN ; \(\widehat{A}=\widehat{ENF}\) (1)
Ta có : \(\widehat{A}+\widehat{D}=90^o\Rightarrow\widehat{AKD}=90^o\)
\(\Rightarrow\Delta AKD\) vuông tại K, đường trung tuyến KF
\(\Rightarrow\widehat{A}=\widehat{AKF}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{A}=\widehat{ENF}=\widehat{AKF}\) (3)
Lại có : \(\widehat{AKF}=\widehat{NEF}\left(NE//AB\right)\) (4)
Từ (3) và (4) \(\Rightarrow\widehat{ENF}=\widehat{NEF}\)
\(\Rightarrow\Delta ENF\) là tam giác cân
\(\Rightarrow FN=FE\) (cặp cạnh tương ứng bằng nhau) (5)
Mà \(FN=FA-NA=\frac{AD-BC}{2}\) (6)
Từ (5) và (6) \(\Rightarrow\) đpcm
Giúp mik đi mik tặng hẳn 3 k
Áp dụng định lý 2 của đường trung bình trong hình thang