Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có tam giác ADH vuông tại H
=> AH^2+HD^2=AD^2
=>HD^2=AD^2-AH^2
=5^2-4^2
=9
=>HD=3 cm
kẻ BK vuông góc với CD
=>ABKH là hình chữ nhật
=>AH=BK=4cm
tam giác BKC vuông tại K
=>BK^2+KC^2=BC^2
=>KC^2=BC^2-BK^2
=80-16
=64
=>KC=8 (cm)
lại có DH+HK+KC=20
=>HK=20-3-8=9 (cm)
=>AB+HK=9 cm
ta có chu vi hình thang ABCD là AB+BC+CD+DA=9+√80+20+5=34+√80(cm)
kẻ 1 đg vuông góc từ B cắt DC tại K
xét tg ADH và tg BCK :
góc AHD= góc BKC ( = 90 độ )
AD= BC ( gt )
góc ADH= góc BCK ( gt )
=> tg ADH= tg BCK ( ch- gn)
=> DH= KC ( 2 cạnh t/ứ ) ( 1)
vì AB song song DC=> ABKD là hcn ( tự chứng minh)
=> AB=Dk= 8 cm
=> DH= KC= (DC-DK ) :2= 3 cm
áp dụng đlí pi-ta-go cho tg ADH vuông ở H :
AH2+DH2= AD2
TS : AH2= 52-32
=> AH = 4 cm
Bài 2:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
Tam giác AHD vuông tại H có HM là đường trung tuyến ứng với cạnh huyền AD
\(\Rightarrow HM=MD=\frac{1}{2}AD\)
\(\Rightarrow\Delta HMD\)cân tại M \(\Rightarrow\widehat{D}=\widehat{MHD}\)
Mà \(\widehat{D}=\widehat{C}\left(gt\right)\Rightarrow\widehat{MHD}=\widehat{C}\Rightarrow MH//NC\)
Mặt khác, \(HM=\frac{1}{2}AD=\frac{1}{2}BC=NC\)
Tứ giác MNHC có: MH // NC và MH = NC
Do đó: MHCN là hình bình hành (DHNB) \(\Rightarrow MN=HC=5cm\)
Vì BC = AD suy ra BC = 5cm.Kẻ một đường chéo từ B đến D. Ta có 2 tam giác ADB và BCD.
Diện tích hình thang ABCD là : 9 x 5 : 2 + 17 x 5 : 2 = 65(cm2)