Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)
⇔ AB = DM và AB // DM
Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.
b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC
c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2
Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)
d) Ta có :
Xét tam giác vuông AHB, ta có :
Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)
⇒ BC = AM = 3 (cm)
Ta có:
M là trung điểm của DC nên
SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)
Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)
⇔ SABD = SBMD = 3 (cm2)
Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)
a ) Ta có : \(AB=AD=\frac{CD}{2}\) và M là trung điểm của CD (gt)
\(\Leftrightarrow AB=DM\) và AB // DM
Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.
b) M là trung điểm của CD nên BM là trung tuyến của \(\Delta BDC\) mà MB = MD = MC.
Do đó \(\Delta BDC\) là tam giác vuông tại B hay \(DB\perp BC\)
c) ABMD là hình thoi (cmt) \(\Leftrightarrow\widehat{D}_1=\widehat{D}_2\)
Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)
d) Ta có :
\(HB=HD=\frac{1}{2}BD=\frac{1}{2}.4=2\left(cm\right)\)
Xét tam giác vuông AHB, ta có :
\(AH=\sqrt{AB^2-HB^2}\) ( định lí Pitago )
\(=\sqrt{2,5^2-2^2}=1,5\left(cm\right)\)
\(\Rightarrow AM=3\left(cm\right)\)
Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)
\(\Rightarrow BC=AM=3\left(cm\right)\)
Ta có :
\(S_{BDC}=\frac{1}{2}BD.BC=\frac{1}{2}.4.3=6\left(cm^2\right)\)
M là trung điểm của DC nên
\(S_{BMD}=S_{BMC}=\frac{S_{BCD}}{2}=3\left(cm^2\right)\)
(chung đường cao kẻ từ B và MD = MC)
Mặt khác \(\Delta ABD=\Delta MDB\) ( ABCD là hình thoi )
\(\Leftrightarrow S_{ABD}=S_{BMD}=3\left(cm^2\right)\)
Vậy \(S_{ABCD}=S_{ABD}+S_{BMD}+S_{BMC}=9\left(cm^2\right)\)
Chúc bạn học tốt !!!
TL:
a)AB//DM
AB=DM(cùng bằng 1/2 CD)
=>ABMD là hbh
=>AD=BM
=>AB=BM=MD=DA=>ABMD là hình thoi
b)tam giác CBM cân tại M => góc C= góc CBM
tam giác MBD cân tại M => góc B= góc BDM
=>góc DBC = góc C + góc BDC = 90*
c)ABMD là hình thoi => AM vuông góc với BD => góc H = 90*
tam giác ADH và tam giác CDB có :
góc H = góc B =90*
góc ADB = BDM
=> tam giác ADH ~ tam giác CBD(g-g)
d)AB=2.5=>CD=5
Áp dụng định lí Pitago vào tam giác vuông BCD
ta tính đc BC = 3cm
Diên tích tam giác BDC = 3*4/2=6cm2
Diện tích tam giác ABD = 1.5 * 4/2 = 3cm2
=> Diện tích hình thang ABCD = 9cm2
~ t.i.c.k nha ~
a: Xét tứ giác ABMD có
AB//MD
AB=MD
Do đó: ABMD là hình bình hành
mà AB=AD
nên ABMD là hình thoi
b: Xét ΔBDC có
BM là đường trung tuyến
BM=DC/2
DO đó: ΔBDC vuông tại B
c: Xét ΔAHD vuông tại H và ΔCBD vuông tại B có
\(\widehat{ADH}=\widehat{CDB}\)
Do đó: ΔAHD\(\sim\)ΔCBD
a)Vì AB // DM
AB = DM(cùng bằng \(\dfrac{CD}{2}\))
⇒ABMD là hình bình hành
⇒AD = BM
⇒AB = BM = MD = DA ⇒ ABMD là hình thoi
b)ΔCBM cân tại M ⇒ góc C = góc CBM
ΔMBD cân tại M ⇒ góc B = góc BDM
⇒ góc DBC = góc C + góc BDC = 90o
Cre: Netflix
c)ABMD là hình thoi ⇒ AM vuông góc với BD ⇒ góc H = 90o
ΔADH và ΔCDB có :
góc H = góc B (= 90o)
góc ADB = BDM
⇒ tam giác ADH ~ tam giác CBD(g - g)
d)AB = 2,5 cm ⇒ CD = 5 cm
Áp dụng định lí Pitago vào tam giác vuông BCD
ta tính đc BC = 3cm
S Δ BDC = 3*4/2=6cm2
S Δ ABD = 1.5 * 4/2 = 3cm2
⇒ Diện tích hình thang ABCD = 9cm2.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a: Xét tứ giác ABMD có
AB//MD
AB=MD
Do đó: ABMD là hình bình hành
mà AB=AD
nên ABMD là hình thoi
b: Xét ΔDBC có
BM là đường trung tuyến
BM=DC/2
Do đó: ΔBDC vuông tại B
c: Xét ΔADH vuông tại H và ΔCDB vuông tai B có
\(\widehat{ADH}=\widehat{CDB}\)
DO đó: ΔADH\(\sim\)ΔCDB
a: Xét tứ giác ABMD có
AB//MD
AB=MD
AB=AD
=>ABMD là hình thoi
b: Xét ΔBDC có
BM là trung tuyến
BM=DC/2
=>ΔBDC vuông tại B
c: Xét ΔAHD vuông tại H và ΔCBD vuông tại B có
góc ADH=góc CDB
=>ΔAHD đồng dạng với ΔCBD