Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : ABCD là hình thang cân
\(\Rightarrow C=D\)(góc đáy hình thang cân)
\(\Rightarrow\)Tam giác EDC là tam giác cân tại E.
Vì : góc A = góc D
Ta lại có : M trung điểm của DC
\(\Rightarrow\) : EM vuông góc với DC ( tam giác EDC cân )
Hay EM là đường cao của tam giác EDC
Mà : O là giao điểm của AC và DB
Nên : EM sẽ đi qua O
Vậy : E,O,M thẳng hàng (đpcm)
a) Xét tg DAB có AM=MD (gt)
DP=PB(gt)
=> MP là dg tb tg DAB => MP //AB (1)
Xét tg BDC có BN=NC(gt)
DO=PB(gt)
=> PN là dg tb tg DBC=> PN//DC. Mà DC//AB ( hthang ABCD)
=> PN//AB. (2)
Từ (1) và (2) => M,N,P thẳng hàng
b) Xét tg ABC có BN=NC(gt)
NK//AB( MN//AB)
=> K td AC
C) xét tg ABCD có AM=MD(gt)
BN=NC(gt)
=> MN là dg tb tg ABCD => MN=(AB+CD)/2 (1)
ta có MP là dg tb tg ABD(cmt)=> MP=1/2AB=AB/2 (2)
Ta có NK là dg tb tg ABC(cmt) =>NK=1/2AB=AB/2. (3)
Mà ta có MN= MP+PK+NK (4)
Từ (1)(2)(3)(4) suy ra
(AB+CD)/2 = AB/2+AB/2+PK
<=> (AB+CD-AB-AB)/2=PK
<=>(-AB+CD)/2=PK
=> (CD-AB):2=PK
a: Xét ΔDAB có
M là trung điểm của AD
P là trung điểm của BD
Do đó: MP là đường trung bình của ΔDAB
Suy ra: MP//AB
Xét hình thang ABCD có
M là trung điểm của AD
N là trung điểm của BC
Do đó: MN là đường trung bình của hình thang ABCD
Suy ra: MN//AB//CD
Ta có: MN//AB
MP//AB
mà MN và MP có điểm chung là M
nên M,N,P thẳng hàng
b: Xét ΔABC có
N là trung điểm của BC
NK//AB
Do đó: K là trung điểm của AC
Xét hình thang ABCD (AB//CD) có:
AM=MD=12AD
BN=NC=12BC
⇒MN⇒MN là đường trung bình
⇒ \(\hept{\begin{cases}MN=(AB+CD)/2=3AB/2\\MN//AB//CD\end{cases}} \)
Xét △ABD có:
AM=MD=12AD
AP//AB
⇒AP=12AB (1)
Xét △ABC có:
BN=NC=12BC
NQ//AB
⇒NQ=12AB(2)
Ta lại có:
MP+PQ+QN=MN
⇔PQ=MN−MP−NQ
⇔PQ=3AB2−12AB−12AB
⇔PQ=12AB(3)
Từ (1)(2)(3)⇒MP=PQ=QN
sử dụng tích chất đường trung bình để chứng minh MN//DC;NP//AB
mặt khác AB//CD=>MN//NP
theo tiên đề ơ-clit thì MN//NP cùng đi qua N nên M;N;P thẳng hàng
a) Xét tam giác ADC có \(OM//DC\)(gt)
\(\Rightarrow\frac{OM}{DC}=\frac{AO}{AC}\left(1\right)\)( hệ quả của định lý Ta-let)
Xét tam giác BDC có \(ON//DC\)(gt)
\(\Rightarrow\frac{ON}{DC}=\frac{OB}{BD}\left(2\right)\)( hệ quả của định lý Ta-let)
Xét tam giác ODC có: \(AB//DC\left(gt\right)\)
\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\)( định lý Ta-let)
\(\Rightarrow\frac{OB}{OD+OB}=\frac{OA}{OA+OC}\)( tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\frac{OB}{BD}=\frac{OA}{AC}\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\Rightarrow OM=ON\left(đpcm\right)\)
b) Xét tam giác ADC có \(OM//DC\left(gt\right)\)
\(\Rightarrow\frac{AM}{AD}=\frac{AO}{AC}\)( định lý Ta-let)
Xét tam giác ABC có \(ON//AB\left(gt\right)\)
\(\Rightarrow\frac{CN}{CB}=\frac{OC}{AC}\)( định lý Ta-let)
\(\Rightarrow\frac{AM}{AD}+\frac{CN}{CB}=\frac{AO}{AC}+\frac{OC}{AC}=\frac{AC}{AC}=1\)
a) HS tự chứng minh hình thang ABPN có hai đường chéo bằng nhau là hình thang cân.
c) Cần thêm điều kiện NP = AB suy ra DC = 3AB
Xét \(\Delta ADC\) có AM=MD;AN=NC
=>MN là đường trung bình của \(\Delta ADC\)
=.>MN//DC 1
xét \(\Delta ACB\) có BP=PC ;AN=NC
=.NP là đường trung bình của \(\Delta ACB\)
=>NP//AB 2
VÌ AB//DC => M,N,P thẳng hàng (đpcm)
Hc tốt