Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Hình thang ABCD có M;N là trung điểm của AD; BC => MN là đường trung bình của hình thang
=> MN // AB//CD và MN = (AB + CD) /2 = 10 cm
+) Xét tam giác ABD có: M là trung điểm của AD; MI // AB
=> I là trung điểm của DB
=> MI là đường trung bình của tam giác ABD => MI = AB?2 = 6/2 = 3cm
+) Xét tam giác CAB có: N là trung điểm của BC; NK //AB => K là trung điểm của AC
=> NK là đường trung bình của tam giác ABC
=> NK = AB / 2 = 6/2 = 3 cm
+) MN = MI + IK + KN = 3 + IK + 3 = 6 + IK = 10 => IK = 4 cm
a) \(S_{ABCD}=\frac{\left(3+7\right).4}{2}=20\left(cm^2\right)\)
b) Ta có : MA = MD
NB = NC
\(\Rightarrow\)MN là đường trung bình của hình thang ABCD
\(\Rightarrow\)MN // BC (1)
Ta có : MD ⊥ BC
NH ⊥ BC
\(\Rightarrow\)MD // NH (2)
Từ (1) và (2) suy ra : Tứ giác MNHD là hình bình hành
Mà : \(\widehat{MDH}=90^o\)
\(\Rightarrow\)Tứ giác MNHD là hình chữ nhật (dhnb)
Vì M là trung điểm của AD
\(\Rightarrow\)MD = \(\frac{1}{2}\)AD
\(\Rightarrow\)MD = 2 cm
Vì MN là đường trung bình của hình thang ABCD
\(\Rightarrow MN=\frac{3+7}{2}=5cm\)
Vậy \(S_{MNHD}=MD.MN=2.5=10\left(cm^2\right)\)
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122