Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ A kẻ đường thẳng song song với BC cắt CD tại E
\(\Rightarrow\)tứ giác ABCE là hình bình hành \(\Rightarrow\)AB=CE=4cm;AE=BC=5cm\(\Rightarrow\)DE=CD-EC=4cm
xét \(\Delta\) ADE có:AD2+DE2=32+42=25
AE2=52=25\(\Rightarrow\)AD2+DE2=AE2
\(\Rightarrow\Delta\)ADE vuông tại D \(\Rightarrow AD\perp DE\) hay \(AD\perp DC\)
\(\Rightarrow\)tứ giác ABCD là hình thang vuông
Bài 8:
a: Xét ΔDBC có
E là trung điểm của BD
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔDBC
Suy ra: EM//DC
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
Bài 5:
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
Từ đỉnh A kẻ đường thẳng song song với BC cắt DC tại E.
Ta có: A E = B C = 50 ( c m )
E C = A B = 40 ( c m )
⇒ D E = 80 − 40 = 40 ( c m )
AE=BC=50(cm) EC=AB=40(cm)
⇒DE=80−40=40(cm)
Tam giác ADE có AD = 30cm; DE = 40cm; AE = 50cm
Nên AD^2 = 30^2 = 900
DE^2 = 40^2 = 1600
A E^2 = 50^2 = 2500
Cho ta AE^2 = A D^ 2 + DE^2
Theo định lí đảo của định lý Py-ta-go thì Δ A D E vuông tại đỉnh D.
Từ đây suy ra ˆ A = ˆ D = 90 0 ⇒ A^=D^=900
⇒ Tứ giác ABCD là hình thang vuông.
Cho hình thang ABCD có AB = 40 cm CD = 80 cm BC = 50 cm AD = 30 cm chứng minh ABCD là hình thang vuông.
Từ A kẻ AE // BC cắt CD tại E => ABCE là hinh bình hành => AC = AB = 40 cm
Và AE = BC = 50 cm, DE = DC - EC = 80 - 40 = 40 cm xét tam giác ADE có AE2 = 2500, DE2 = 1600, DA2 = 900
=> AE2 = DE2 + DA2 => tam giác ADE vuông tại D
Hình thang ABCD có cạnh bên AD Vuông góc đáy CD => hình thang vuông.
a: Xét ΔABD và ΔBDC có
AB/BD=BD/DC=AD/BC
Do đó: ΔABD∼ΔBDC
b: Ta có: ΔABD=ΔBDC
nên \(\widehat{ABD}=\widehat{BDC}\)
hay AB//CD
=>ABCD là hình thang
Kẻ \(BE//AD\)
thì \(AD=BE\)
vÌ \(DE=AB=2cm\)
\(\Rightarrow EC=3cm\)
Xét tam giác BEC ta có :
\(BE+BC>EC=3cm\)
\(\Rightarrow AD+BC>3cm\) (đpcm)