Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có AB/BD=4/6=2/3
BD/CD=6/9=2/3
suy ra AB/BD=BD/CD
Xét tam giác ABD và tam giác BDC có
góc ABD= góc BDC(so le trong, AB song song với CD)
AB/BD=BD/CD(cmt)
suy ra tam giác ABD đồng dạng với tam giác BDC(c.g.c)
b tam giác ABD đồng dạng với tam giác BDC suy ra góc ADB= góc BCD=45 độ
ta có góc BCD+ góc B=180 đọ
45+B=180
góc B=135 độ(đpcm)
a) Ta có:
\(\frac{AB}{BD}=\frac{4}{6}=\frac{2}{3}\); \(\frac{BD}{DC}=\frac{6}{9}=\frac{2}{3}\).
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}=\frac{2}{3}\).
Xét \(\Delta ABD\)và \(\Delta BDC\)có:
\(\widehat{ABD}=\widehat{BDC}\)(vì \(AB//CD\)).
\(\frac{AB}{BD}=\frac{BD}{DC}\)(chứng minh trên).
\(\Rightarrow\Delta ABD~\Delta BDC\left(c.g.c\right)\)(điều phải chứng minh).
a. vì AB//CD => góc ABD=góc BDC
xét tam giác ADB và tam giác BCD có:
góc DAB=góc DBC (gt)
góc ABD= góc BDC (cmt)
=> tam giác ADB ~ tam giác BCD (c.c)
b. vì tam giác ADB ~ tam giác BCD
=> \(\dfrac{AD}{BC}\)=\(\dfrac{AB}{BD}\)=\(\dfrac{DB}{CD}\)
=> BC= \(\dfrac{AD.BD}{AB}\)= \(\dfrac{4.6}{3}\)= 8(cm)
=> CD= \(\dfrac{BD^2}{AB}\)= \(\dfrac{6^2}{3}\)= 12 (cm)
a, Xét tam giác ADB và tam giác BCD có
^DAB = ^CBD ; ^ABD = ^CDB ( soletrong)
Vậy tam giác ADB ~ tam giác BCD (g.g)
b, \(\dfrac{AD}{BC}=\dfrac{AB}{BD}\Rightarrow BC=\dfrac{AD.BD}{AB}=\dfrac{7}{10}cm\)
\(\dfrac{DB}{CD}=\dfrac{AB}{BD}\Rightarrow CD=\dfrac{BD^2}{AB}=1cm\)
c, Ta có \(\dfrac{S_{ADB}}{S_{BCD}}=\left(\dfrac{AD}{BC}\right)^2=25\)
a) Xét 2 tam giác ADB và BCD có: góc DAB = góc DBC (gt) góc ABD = góc BDC ( so le trong ) nên tam giác ADB đồng dạng với tam giác BDC.(1) b) Từ (1) ta được AB/BC = DB/CD = AB/BD hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5 ==> BC= 3,5*5/2,5 = 7 (cm) ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5 ==> CD = 5*5/2,5 =10 (cm) c) Từ (1) ta được; AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 . ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2 mà tỉ số diện tích bằng bình phương tỉ số động dạng do đó S ADB/ S BCD = (1/2)^2 = 1/4