Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=AB/CD=3/5
=>BO/BD=3/8; AO/AC=3/8
Xét ΔBDC có ON//DC
nên ON/DC=BO/BD
=>ON/10=3/8
=>ON=3,75cm
Xét ΔADC có OM//DC
nên OM/DC=AO/AC=3/8
=>OM=3,75cm
=>MN=7,5cm
c. -Xét △ADC có: OM//DC (gt).
\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)
\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).
-Xét △BDC có: ON//DC (gt).
\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)
\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)
-Xét △ABO có: AB//DC (gt).
\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)
-Từ (1), (2),(3) suy ra:
\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)
\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)
\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)
a: Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔAOB∼ΔCOD
Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)
hay \(OA\cdot OD=OB\cdot OC\)
b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)
\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)
a, xét tam giác ODC có : AB // DC
=> OA/OC = OB/OD = AB/DC (đl)
có : AB = 4; DC = 9 (gt)
=> OA/OC = OB/OD = 4/9
B, xét tam giác ABD có : EO // AB (gt) => EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có FO // AB (gt) => OF/AB = CO/CA (hệ quả) (2)
xét tam giác ODC có AB // DC (gt) => DO/DB = CO/CA (hệ quả) (3)
(1)(2)(3) => OE/AB = OF/AB
=> OE = OF
xét tam giác ABD có : EO // AB(Gt) => EO/AB = DE/AD (hệ quả) (4)
xét tam giác ADC có EO // DC (gt) => OE/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + AE/AD
=> EO(1/AB + 1/DC) = 1 (*)
xét tam giác ACB có FO // AB (gt) => OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có OF // DC (gt) => OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = 1 (**)
(*)(**) => OF(1/AB + 1/DC) + OE(1/AB + 1/DC) = 1 + 1
=> (OE + OF)(1/AB + 1/DC) = 2
=> EF(1/AB + 1/DC) = 2
=> 1/AB + 1/DC = 2/EF
a: OM//CD
=>OM/CD=AO/AC=AM/AD
ON//DC
=>ON/CD=BO/BD=BN/BC
b: OM/CD=ON/CD(AM/AD=BN/BC)
=>OM=ON
c: 2/MN=1/AB+1/CD
=>2/MN=1/4+1/6=3/12+2/12=5/12
=>MN/2=12/5
=>MN=24/5=4,8cm