Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a/ Trong ΔABCΔABC có N,PN,P lần lượt là trung điểm của BC,ACBC,AC
⇒ NPNP là đường trung bình ΔABCΔABC
⇒ NP//AB//CDNP//AB//CD (1)
Trong ΔBCDΔBCD có N,QN,Q lần lượt là trung điểm của BC,BDBC,BD
⇒ NQNQ là đường trung bình ΔBCDΔBCD
⇒ NQ//CD//ABNQ//CD//AB (1)
Trong hình thang ABCDABCD có M,NM,N lần lượt là trung điểm của AD,BCAD,BC
⇒ MNMN là đường trung bình hình thang ABCDABCD
⇒ MN//AB//CDMN//AB//CD (3)
Từ (1) (2) và (3) suy ra: M,N,P,QM,N,P,Q thằng hàng
Hay M,N,P,QM,N,P,Q nằm trên một đường thẳng
b/ Vì MNMN là đường trung bình thang ABCDABCD
nên MN=AB+CD2=a+b2MN=AB+CD2=a+b2
Ta có: NPNP là đường trung bình ΔABCΔABC
⇒ NP=AB2=a2NP=AB2=a2
Ta lại có: NQNQ là đường trung bình ΔBCDΔBCD
⇒ NQ=CD2=b2NQ=CD2=b2
Vì a>b nên PQ=NP−NQ=a2−b2=a−b2PQ=NP−NQ=a2−b2=a−b2
c/ Ta có: MN=MP+PQ+QNMN=MP+PQ+QN
⇒a+b2=3.a−b2⇒a+b2=3.a−b2
⇒a+b=3a−3b⇒a+b=3a−3b
⇒3a−a=b+3b⇒3a−a=b+3b
⇒2a=4b⇒2a=4b
⇒a=2b⇒a=2b
Chúc bạn học tốt !!!
^HT^
a) tam giác abd có
am=md;bn=nd
=>mn là đường trung bình của tam giác abd
=>mn//ab(1)
tương tự vói tam giác bcd ta có
nq//cd(2)
mà ab//cd(3)
từ (1);(2) và (3) suy ra m;n;q thẳng hàng(*)
tam giác abc có
ap=pc;bq=cq
=>pq là đường trung bình của tam giác abc
=>pq/ab(4)
từ (1);(2) và (4) suy ra m;p;q thẳng hàng(**)
từ (*) và (**) suy ra m;n;p;q thảng hàng
M;N lần lượt là trđ của AD; BC (gt)
=> MN là đtb của ht ABCD
=> MN // AB
xét tg ABD có MP // AB => MP/AB = DM/DA mà DM/DA = 1/2 do M là trđ của AD
xé tg ABC có QN // AB => QN/AB = CN/CB mà CN/CB = 1/2 do N là trđ của BC
=> MP/AB = QN/AB = 1/2
=> MP = QN (1)
MP/AB = QN/AB = 1/2 => mp = 1/2ab = qn
có MN là đtb của hình thang ABCD => MN = (AB + DC) /2
=> MP + QP + QN = AB/2 + CD/2
=> AB/2 + AB/2 + PQ = AB/2 + CD/2
=> PQ = CD/2 - AB/2
mà CD/2 = AB (gt)
=> PQ = AB - AB/2 = AB/2
vậy MP = PQ = QN
GIÚP VỚI