Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Δ S A B vuông cân tại S , A B = 4 a
⇒ S A = S B = 4 a 2 = 2 a 2
⇒ l = 2 a 2
Δ S A C cân tại S , A S C ^ = 120 0
⇒ S A C ^ = S C A ^ = 30 0
⇒ c o s S A O ^ = O A S A hay 3 2 = R 2 a 2 ⇒ R = a 6
S x q = π R l = π . a 6 .2 a 2 = π 4 a 2 3 .
a) Đường sinh l của hình nón là:
l = = = 5√41 (cm).
Diện tích xung quanh của hình nón là:
Sxq = πrl = 125π√41 (cm2)
b) Vnón = = (625.20π)/3 = (12500π)/3 (cm3)
c) Giả sử thiết diện cắt hình tròn đáy theo đoạn thẳng AB.
GỌi I là trung điểm AB, O là đỉnh của nón thì thiết diện là tam giác cân OAB.
Hạ HK vuông góc AI, H là tâm của đáy, thì HK vuông góc ( OAB) và theo giả thiết HK = 12 (cm)
Đáp án C.
Phương pháp:
Diện tích xung quanh của hình nón: S x q = π R l
Cách giải:
Gọi M là trung điểm AB ⇒ O M ⊥ A B . Mà O M ⊥ S O (vì SO vuông góc với đáy)
⇒ OM là đoạn vuông góc chung của SO và AB
⇒ d S O ; A B = O M = 3
Tam giác OMA vuông tại M:
O A 2 = O M 2 + M A 2 ⇒ R 2 = 3 2 + M A 2 ⇒ M A = R 2 − 9
Tam giác SAB vuông tại A có S A = S B (Vì Δ S O B = Δ S O A c . g . c )
⇒ Δ S A B vuông cân tại S
⇒ S A = A B 2 = 2 A M 2 = A M . 2 = 3 R 2 − 18
(N) có góc ở đỉnh là
120 0 ⇒ A S O = 60 0
Tam giác SOA vuông tại O:
sin O S A = O A S A ⇒ sin 60 0 = R 3 R 2 − 18 = 3 2 ⇒ 2 R = 3 . 3 R 2 − 18 ⇔ 4 R 2 = 6 R 2 − 54
⇔ R 2 = 27 ⇒ R = 3 3 .
l = S A = 2 R 2 − 18 = 2.27 − 18 = 36 = 6
S x q = π R l = π .3 3 .6 = 18 π 3
Phương pháp:
+) Gọi S là đỉnh hình nón và O là tâm đường tròn đáy của hình nón. Giả sử (P) cắt nón theo thiết diện là tam giác SAB.
+) Gọi M là trung điểm của AB, tính SM, từ đó tính S S A B
Cách giải:
Gọi S là đỉnh hình nón và O là tâm đường tròn đáy của hình nón.
Giả sử (P) cắt nón theo thiết diện là tam giác SAB.
Gọi M là trung điểm của AB ta có
Đáp án D.
Gọi thiết diện qua trục là tam giác cân SAB có S A = 2 A B .
Ta có:
S O 2 = S A 2 − A O 2 = 4 A B 2 − O A 2 = 15 r 2 = h 2 ⇒ r = 15 5 c m .
Diện tích xung quanh của hình nón là: S x q = π r l = π r h 2 + r 2 = 12 5 c m 2 .