Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a\()\)Gọi O là giao điểm hai đường chéo của hình chữ nhật ABCD . Dễ thấy : AM // DO
=> Tứ giác AMDB là hình thang
b\()\)Do AM // BD nên \(\widehat{OBA}=\widehat{MAE}(\text{hai giác đồng vị})\). Tam giác AOB cân ở O nên \(\widehat{OBA}=\widehat{OAB}\). Gọi I là giao điểm hai đường chéo của hình chữ nhật AEMF thì tam giác AIE cân ở I nên \(\widehat{IAE}=\widehat{IEA}\)
Từ các chứng minh trên suy ra : \(\widehat{FEA}=\widehat{OAB}\)do đó EF // AC \((1)\)
Mặt khác IP là đường trung bình của tam giác MAC nên IP // AC \((2)\)
Từ 1 và 2 => 3 điểm E,F,P thẳng hàng
c\()\)\(\Delta MAF~\Delta DBA(g-g)\Rightarrow\frac{MF}{FA}=\frac{AD}{AB}(\text{không đổi})\)
Bạn tham khảo nhé Bùi Quang Sang
Chúc bạn học tốt ~
Ta có hình :
a ) Gọi O là giao điểm hai đường chéo của hình chữ nhật ABCD . Dễ thấy : AM // DO
\(\Rightarrow\)Tứ giác AMDB là hình thang
b ) Do AM // BD nên \(\widehat{OBA}=\widehat{MAE}\)( hai góc đồng vị ) . Tam giác AOB cân ở O nên \(\widehat{OBA}=\widehat{OAB}\). Gọi I là giao điểm hai đường chéo của hình chữ nhật AEMF thì tam giác AIE cân ở I nên \(\widehat{IAE}=\widehat{IEA}\)
Từ các chứng mình trên suy ra \(\widehat{FEA}=\widehat{OAB}\)do đó EF // AC ( 1 )
Mặt khác IP là đường trung bình của tam giác MAC nên IP // AC ( 2 )
.Từ ( 1 ) và ( 2 ) suy ra ba điểm E ; F ; P thẳng hàng
c ) \(\Delta MAF~\Delta DBA\left(g-g\right)\Rightarrow\frac{MF}{FA}=\frac{AD}{AB}\)( không đổi )
d ) Nếu \(\frac{PD}{PB}=\frac{9}{16}\)thì \(\frac{PD}{9}=\frac{PB}{16}=k\Rightarrow PD=9k;PB=16k\)
Nếu \(CP\perp BD\)thì \(\Delta CPB~\Delta DCP\left(g-g\right)\Rightarrow\frac{CP}{PD}=\frac{PB}{CP}\)do đó \(CP^2=PB.PD\)Từ đó ta có :
\(\left(2,4\right)^2=9.16k^2\Rightarrow k=0,2;PD=9k=1,8\left(cm\right);PB=16k=3,2\left(cm\right);BD=5\left(cm\right)\)
Bạn đọc dễ dàng chứng minh được \(BC^2=BP.BD=16\). Do đó : \(BC=4\left(cm\right);CD=3\left(cm\right)\)
EF //AC hay MC thế bạn
EF//AC bn ak