K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

A B C D F K M E

Sửa đề: Chứng minh góc EFM = 900 ?

Có DF = CK => DF + FK = CK + FK => DK = CF. Xét \(\Delta\)EKF có ^EKF = 900

=> ME2 = KE2 + KM2 (ĐL Pytagoras). Tương tự: KE2 = DE2 + DK2 ; KM2 = CK2 + CM2

Do đó ME2 = DE2 + DK2 + CK2 + CM2. Thay CK = DF, DK = CF ta được:

ME2 = (DE2 + DF2) + (CF2 + CM2) = FE2 + FM2 (ĐL Pytagoras)

Áp dụng ĐL Pytagoras đảo vào \(\Delta\)EMF suy ra \(\Delta\)EMF vuông tại F => ^EFM = 900.

11 tháng 7 2019

Cho mình sửa dòng thứ 2: "Xét \(\Delta\)EKM có ^EKM = 900 "

28 tháng 7 2017
Gọi H, I lần lượt là trung điểm của DC, EM Ta có DH = HC, DF = CK (gt) => DH - DF = CH - CK => FH = HK CM // DE => DEMC là hình thang mà IE=IM, HC=HD => IH là đường trung bình => IH // DE mà DE ∟ CD => IH ∟ CD Tam giác FIK có KH là đường cao (vì IH∟CD), đồng thời là trung tuyến (vì FH=HK) => Tam giác FIK cân tại I => FI = KI TAm giác EKM vuông tại K có KI là trung tuyến => KI=½ AM mà KI=FI (cmt) => FI = ½ AM mà FI là trung tuyến của tam giác EFM => Tam giác EFM vuông tại F => ^EFM=90°
19 tháng 12 2018

sao ko chứng minh luôn tính chất đường trung tuyến trong tam giác vuong luôn đi sao phải dài dòng thế