K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:Xét tứ giác BDEF có 

C là trung điểm của BE

C là trung điểm của DF

Do dó: BDEF là hình bình hành

mà BE\(\perp\)FE

nên BDEF là hình thoi

b: Xét tứ giác ADEC có 

AD//CE

AD=CE

Do đó: ADEC là hình bình hành

Suy ra: AC//DE và AE cắt DC tại trung điểm của mỗi đường

mà H là trung điểm của DC

nên H là trung điểm của AE
hay A,E,H thẳng hàng

a: Xét tứ giác BDEG có

C là trung điểm của BE

C là trung điểm của DG

DO đó: BDEG là hình bình hành

mà BE⊥DG

nên BDEG là hình thoi

b: Ta có: BDEG là hình thoi

nên DE=DB

mà DB=AC

nên DE=AC

 

a: Xét tứ giác ADFC có

AD//FC

AD=FC

=>ADFC là hình bình hành

b: Xét tứ giác AEDC có

AE//DC

AE=DC

=>AEDC là hình bình hành

=>ED//AC

mà AC//DF

nên E,D,F thẳng hàng

18 tháng 12 2022

a: Xét tứ giác ABEC có

I là trung điểm chung của AE và BC

AB=AC

Do đó: ABEC là hình thoi

b: AB//CE
AB//CD
Do đó: C,D,E thẳng hàng

c: Xét ΔDAE có

AC là trung tuyến

AC=DE/2

Do đó: ΔDAE vuông tại A

=>góc DAE=90 độ

d: Để ABEC là hình vuông thì góc BAC=90 độ

=>AB vuông góc với AC

19 tháng 12 2022

ghi a) mới đúng

17 tháng 12 2022

a: Xét tứ giác ABEC có

I là trung điểm chung của AE và BC

AB=AC

Do đó: ABEC là hình thoi

b: ABEC là hình thoi

nên AB//CE

mà AB//CD

nên C,E,D thẳng hàng

c: Xét ΔDAE có

AC là trung tuyến

AC=DE/2

Do đó: ΔDAE vuông tại A

=>góc DAE=90 độ

20 tháng 12 2016

Hình bạn tự vẽ nha

a) CMR Tứ giác ABEC là hình bình hành

Vì ABCD là hcn (gt) => AB=CD và AB//CD (t/c hcn)

=> AB=CE và AB//CE ( CE= DC, E \(\in\) CD)

=> tứ giác ABEC là hình bình hành(dhnb)

b) BOCF là hình gì

Vì ABEC là hbh (cmt) => AC=BE và AB//BE 9T/c hbh)

=> 1/2 AC=1/2BE và OC//BF (1)

<=> OC= BF(2)

Từ (1) và (2) => BOCF là hbh (dhnb)

mà OB=OC (t/c đừng chéo hcn)

=> BOCF là hình thoi (dhnb)

c) DOFE là hình thang cân

Vì AC= BE ( ABEC là hbh)

mà AC =BD ( T/c hcn)

=> BE= BD => Tam giác BED cân tại B (đ/n)

=> BDE= BED (t/c tam giác cân) (1)

Vì C là trung điểm DE ( D đx E qua C) => BC là đường trung tuyến của tam giác ABC cân => BC là đương cao ( t/c các đường trong tam giác cân) => BC _l_ DE

mà BC_l_ OF (đg chéo hình thoi)

=> DE//OF ( từ _l_ -> //) (2)

Từ (1) và (2)=> OFDE là hình thang cân (dhnb hthang cân)

 

20 tháng 12 2016

mọi người giúp mình nhé mai mình thi rồi

18 tháng 12 2021

Các bạn làm giúp mình vs !!!  Mai mình phải nộp ròi

18 tháng 12 2021

ABCDIKEFNM----

a) Vì ABCD là hcn => AB//CD; AB=CD

Mà E,F lần lượt là trung điểm của AB và CF

=> EA=EB=1/2AB;DF=FC=1/2DC và EA//FC

=> EA=FC;EA//FC

Do đó AECF là hbh ( 2 cạnh đối // và = nhau)

b) 

Vì ABCD là hcn => AB//CD; AB=CD

Mà E,F lần lượt là trung điểm của AB và CF

=> EA=EB=1/2AB;DF=FC=1/2DC và EA//DF

=> EA=DF;EA//DF

=> AEFD là hbh (  ( 2 cạnh đối // và = nhau)

Lại có: ^ADF=90o ( ABCD là hcn)

Do đó:  AEFD là hcn. ( hbh có 1 góc vuông) (đpcm)

c) Vì A đối xứng với N qua D (gt)

=> AN là đường trung trực của ^MAF

=> MA=AF (1)

Vì M đối xứng với F qua D

<=>MF là đường trung trực của ^AMN

=>MA=MN (2)

<=> FM là đường trực của ^AFN

=>AF=NF (3)

Từ (1);(2) và (3) => AM=MN=NF=AF

Nên: AMNF là hình thoi (tứ giác có 4 góc vuông ) (đpcm)

d) ngu câu hình cuối nên bỏ đi để làm n'

mình chứng minh DK đg trung tuyến nw o khả quan lắm :)) nên bỏ 

22 tháng 12 2021
xin lũi câu tính S mìnk khum làm đc :Đ
22 tháng 12 2021

ABCHEDF----------

a) Vì E là trung điểm AC; D trung điểm AB (gt)

=> ED là đường tb của tam giác ABC

=> ED//CB;ED=1/2CB

Mà F là trung điểm BC (gt)=>FB=FC=1/2BC

Do đó: ED//FB;ED=1/2FB

Nên tứ giác BDEF là hbh (2 cạnh đối // và = nhau)

b) Nối H với D ta có:

Xét tam giác vuông ABC có DA=DB=1/2AB (D trung đ AB)

=> HD là đường trung tuyến của tam giác ABC (đg trung tuyến ứng vs cạnh huyền)

=>HD=1/2AB

Nên: HD=DB (1)

gọi I nằm giữa D và F

Vì AC//DF và DF=1/2 AC (DF là đg tb;cmt)

=>AE=DF;AE//DF

=>AEFD là hbh (2 cạnh đối // và =nhau)

Mà H thuộc AE thuộc D và I thuộc DF

=> HE//DF=> HEFD là hình thang 

Lại có: đường cao BH=> ^BHC=90o

=> HEFD là hình thang cân

=> ^AEF=90o

=>AEFD là hcn (hbh có 1 góc _|_)

=> ^DFE=90(2)

Từ (1) và (2)=> DF là đường trung trực của ^HDB

=> I trung điểm HB

Nên:H và B đối xứng với nhau qua DF (đpcm)

c) Để BDEF là hcn => hbh BDEF có 1 góc vuông 

=> ^FEC=90o

Mà EA=EC

=>FE là đường trung tuyến của cạnh AC

=>EA=EC=1/2AC

Do đó FD cũng là đường trung tuyến cạnh AB

=>DA=DB=1/2AB

Nên: AC=AB

=> tam giác ABC là tam giác cân tại A

Vậy tam giác ABC là tam giác cân tại A thì BDEF là hcn.