K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

Câu a mình khỏi nói ha. Nó quá hiển nhiên rồi.

(Lớp 8 giờ này học tam giác đồng dạng chưa ta???)

Câu b: Mấu chốt ở đây là chứng minh tam giác \(BMQ\) và \(BHC\) đồng dạng.

Trước đó  chứng minh tam giác \(BMH\) và \(BQC\) đồng dạng cái đã.

Do tam giác \(BAH\) và \(BDC\) đồng dạng (tự CM) nên khi vẽ 2 đường trung tuyến của các tam giác này sẽ sinh ra 2 tam giác đồng dạng khác là \(BMH\) và \(BQC\)(dễ dàng CM nhờ vào tỉ lệ cạnh).

Nên \(\frac{BM}{BQ}=\frac{BH}{BC}\Rightarrow\frac{BM}{BH}=\frac{BQ}{BC}\).

Ta còn có \(\widehat{MBH}=\widehat{QBC}\Rightarrow\widehat{MBQ}=\widehat{HBC}\).

Ta đã đủ yếu tố c-g-c để CM 2 tam giác \(BMQ\) và \(BHC\) đồng dạng rồi. Từ đó suy ra đpcm.

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//KC và MN=KC

=>NCKM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MK

hay góc BMK=90 độ

5 tháng 11 2017

A B C D M N H H Q K

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//PC và MN=PC

=>NCPM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MP

hay góc BMP=90 độ

12 tháng 10 2019

Xét tam giác ABD có MN là đường trung bình => MN//=AD/2

Xét tam giác ACD có PQ là đường trung bình => PQ//=AD/2

=> MN//=PQ => Tứ giác MNPQ Là hình bình hành (1)

Tương tự ta cũng chứng minh được NP//=MQ//=BC/2

Ta có ^DAB+^AMN=180 (Hai góc trong cùng phía)

Ta có ^CBA+^BMQ=180 (lý do như trên)

=> (^DAB+^CBA)+(^AMN+^BMQ)=360 => ^AMN+^BMQ=360-^DAB+^CBA=360-270=90

Ta có ^AMB=^AMN+^BMQ+^NMQ=180=> ^NMQ=180-^AMN+^BMQ=180-90=90 (2)

Từ (1) và (2) => MNPQ là hình chữ nhật