Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{MC}\right|\)
\(\Rightarrow\left|\overrightarrow{MI}\right|=\left|\overrightarrow{MD}\right|\)
( I là trung điểm của AB
D là trung điểm của AC)
\(\Rightarrow MI=MD\)
\(\Rightarrow M\) là điểm thuộc đường trung trực của đoạn ID
#baoquyen
\(MA+MB+MC=4MD\)
\(MA+MC=4MD-MB\)
\(MO+OA+MO+OC=4MO+4OD-MO-OB\)
\(2MO=3MO+4OD+4OB-5OB\)
\(0=MO-5OB\)
\(5OB=MO\)
Tới đây vẽ nha
cho tam giác ABC tìm tập hợp các điểm M thỏa mãn:
...
a)Ta có:
\(vectoMA+vectoMB=2vectoMI\) ( I là trung điểm của AB)(*)
\(\Leftrightarrow2vectoMI.vectoBC=0\Leftrightarrow MI\perp BC\)
Vậy tập hợp các điểm M là đường thẳng đi qua I và vuông góc với BC.
b)
Ta có:
Từ (*)
\(\Leftrightarrow vectoMA+vectoMA.vectoMB=0\)
\(\Leftrightarrow vectoMA.\left(vectoMA+vectoMB\right)=0\)
\(\Leftrightarrow2vectoMA.vectoMI=0\Leftrightarrow MA\perp MI\)
Vậy tập hợp các điểm M là đường tròn đường kính AI
Cho hình vuông ABCD cạnh a. Tìm tập hợp điểm M thỏa mãn:
...
Giải
Gọi điểm O là tâm của hình vuông ABCD ( trung điểm của AC), ta có:
\(vectoMA.vectoMC=\frac{-a^2}{4}\)
\(\Leftrightarrow\left(vectoMO+vectoOA\right).\left(vectMO+vectoOC\right)=\frac{-a^2}{4}\)
\(\Leftrightarrow MO^2-OA^2=\frac{-a^2}{4}\)
\(\Leftrightarrow OM^2=OA^2-\frac{a^2}{4}=\frac{2a^2}{4}-\frac{a^2}{4}=\frac{a^2}{4}\)
\(\Leftrightarrow OM=\frac{a}{2}\)
Vậy tập hợp các điểm M là đường tròn tâm O bán kính a/2
a,gọi I là trung điểm của AB, vì A và B là 2 điểm cố định => I cũng cố định
=> vt IA+vt IB=0
=>|vt MA+vtMB|=|vtMA-vtMB|
<=> |vtMI+vtIA+vtMI+vtIB|=|vtMI+vtMA-vtMI-vtIB|
<=>|2.vtMI|=|vtBA|
<=> 2,MI=BA
=> MI=BA/2
=> M thuộc (I;AB/2)