K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2015

bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
3 tháng 3 2020

B M C N A D P Q H E F

a, Ta có: \(\widehat{MAN}=\widehat{DBC}=45^0\Rightarrow AQMB\) nội tiếp. \(\left(1\right)\)

b,  Từ \(\left(1\right)\Rightarrow\widehat{MQA}+\widehat{MBA}=180^0\Rightarrow\widehat{AQM}=90^0\left(\widehat{ABC}=90^0\right)\)

\(\Rightarrow MQ\perp AN\)

Tương tự như trên ta có: \(NP\perp AM\Rightarrow H\) là trực tâm của \(\Delta AMN\)

\(\Rightarrow AH\perp MN\left(đpcm\right)\)

c, Gọi \(AH\)\(∩\) \(MN=E\)

Gọi \(AF\perp AM,F\in CD\Rightarrow\widehat{FAD}=\widehat{BAM}\left(+\widehat{MAD}=90^0\right)\)

Lại có: \(\widehat{ADF}=\widehat{ABM}=90^0,AD=AB\Rightarrow\Delta ADF=\Delta ABM\left(g-c-g\right)\)

\(\Rightarrow AF=AM\)

Lại có: \(\widehat{NAF}=\widehat{MAN}=45^0\Rightarrow\Delta FAN=\Delta MAN\left(c-g-c\right)\)

\(\Rightarrow MN=FN\Rightarrow MN+NC+CM=NF+NC+CM=DN+CN+DF+CM\)

\(=\left(DN+CN\right)+\left(BM+CM\right)=CD+CB=2AD\)

Lại có tiếp: \(\hept{\begin{cases}AE\perp MN\\AD\perp NF\end{cases}}\Rightarrow AE=AD\)

\(\Rightarrow S_{ANM}=\frac{1}{2}.AE.MN=\frac{1}{2}.AD.MN\)

Lại có tiếp: \(MN\le MC+NC\)

\(\Rightarrow2MN\le MN+MC+NC=2AD\)

\(\Rightarrow MN\le AD\)

\(\Rightarrow S_{ANM}=\frac{1}{2}.AD.MN\le\frac{1}{2}AD^2\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}M\equiv B\\M\equiv C\end{cases}}\)

(Rối thực sự -.- )

26 tháng 5 2020

thực sự đấy, rối lắm