Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAB có
N là trung điểm của HB
M là trung điểm của HA
Do đó: NM là đường trung bình của ΔAHB
Suy ra: \(NM=\dfrac{AB}{2}=2\left(cm\right)\)
c: Ta có: ΔAHC vuông tại H
mà HF là đường trung tuyến
nên HF=AF
mà AF=ME
nên HF=ME
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: FE là đường trung bình
=>FE//BC
hay FE//MH
Xét tứ giác EFMH có FE//MH
nên EFMH là hình thang
mà FH=ME
nên EFMH là hình thang cân
d: Xét tứ giác MNAB có
MN//AB
MN=AB
Do đó: MNAB là hình bình hành
Suy ra: MA cắt NB tại trung điểm của mỗi đường(1)
Ta có: AEMF là hình chữ nhật
nên MA cắt EF tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AM,BN,FE đồng quy
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
a: Xét tứ giác MFCE có
\(\widehat{MFC}=\widehat{MEC}=\widehat{FCE}=90^0\)
Do đó: MFCE là hình bình hành
Suy ra: MC=EF