K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Gọi M là trung điểm BC => BM=CM 
Xét tam giác ABC có: 
BM=CM 
AE=EC (giả thiết vì E la trung điểm của AC) 
Nên: EM là đường trung bình trong tam giác ABC 
=>EM//AB và EM=AB/2 
Tương tự: Xét tam giác BCD có: 
FM là đường trung bình trong tam giác BCD 
=>FM//CD và FM=CD/2 
Lại có: 
FM//CD 
mà AB//CD (theo giả thiết ABCD la hthang) 
Nên: FM//AB 
Mà EM//AB 
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng. 
Vậy,EF=FM-EM=(CD-AB)/2  

4 tháng 8 2021

a) Chọn điểm O là giao điểm của 2 đường chéo của hình chữ nhật ABCD
⇒ PO là đường trung bình của △ CAM
⇒ PO // AM ⇒ BD//AM
⇒ Tứ giác AMDB là hình thang
b)   Từ a ta có: có AM // BD
⇒     \(\widehat{A_1}=\widehat{B_1}\) ( đồng vị )
Mà △ OAB cân tại O ( vì ABCD là hình chữ nhật )
⇒   \(\widehat{A_2}=\widehat{B_1}\)
⇒  \(\widehat{A_1}=\widehat{A_2}\)    \(\left(1\right)\)
Gọi I là giao điểm của 2 đường chéo của hình chữ nhật AEMF
⇒     △ IEA cân tại I
⇒     \(\widehat{E_1}=\widehat{A_1}\)   \(\left(2\right)\)
Từ \(\left(1\right)\)\(\left(2\right)\) ⇒  \(\widehat{E_1}=\widehat{A_1}\) ( ở vị trí đồng vị )
⇒ EF // AC  \(\left(3\right)\)
     Mặt khác IP là đường trung bình của △ MAC ( do I,P là trung điểm của AM và BD )
⇒  IP //  AC   \(\left(4\right)\)
Từ \(\left(3\right)\)\(\left(4\right)\) ⇒ EF  // IP ⇒  Ba điểm E, F, P thẳng hàng
c) Xét△ MAF và △ DBA có:
\(\widehat{MFA}=\widehat{DAB}\)  \(=90^o\)
\(\widehat{A_1}=\widehat{B_1}\) ( cmt ) ;  \(\widehat{A_1}=\widehat{M_1}\)   ( so le trong )
⇒ \(\widehat{B_1}=\widehat{M_1}\)
⇒△ MAF ∼ △ DBA ( g - g )
\(\dfrac{MF}{DA}=\dfrac{AF}{BA}\)    ⇒    \(\dfrac{MF}{AF}=\dfrac{DA}{BA}\)   ( không đổi )