Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Diện tích hình chữ nhật ABCD là:
SABCD = 12.16= 192 ( cm2)
b) Áp dụng định lý Py-ta-go trong tam giác ADC vuông tại A :
AD2 + DC2 = AC2
122 + 162 = AC2
400 = AC2
=> AC = 20 (cm)
HCN ABCD có O là giao điểm hai đường chéo AC và BD nên O là trung điểm của AC và BD.
Xét tam giác ADC vuông tại D có O là trung điểm AC
=> DO = 1/2 AC = 1/2 . 20 = 10 ( cm )
Tam giác ADC vuông tại D có O là trung điểm AC
M là trung điểm AD
=> MO là đường trung bình của tam giác ADC
=> MO = 1/2 DC
=> MO = 1/2 . 16 = 8 ( cm)
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
tam giác ACD có AO=OD(O là giao điểm hai đường chéo)
AM=MD(M là trung điểm AD) suy ra MO là đường trung bình tam giác ACD
=> MO=\(\dfrac{DC}{2}\)=\(\dfrac{16}{2}\)=8 cm
tam giác ACD vuông tại D suy ra AC2= AD2+DC2
AC2= 122+162= 144+256=400
=> AC=\(\sqrt{400}\)=20 cm
tam giác ACD vuông tại D có DO là đường trung tuyến(OB=OD)
suy ra DO= \(\dfrac{AC}{2}\)=\(\dfrac{20}{2}\)=10 cm
tui làm bài 1 thui còn bài còn lại làm biếng
chán là mình học lớp 5
Help me!Mik k cho