Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ điểm N hạ \(ON\perp DC\)
ABCD là hình chữ nhật=>\(\left\{{}\begin{matrix}AB=DC=4cm\\AD=BC=2cm\end{matrix}\right.\)
mà \(ABCD\) là hình chữ nhật \(=>BC\perp CD=>BC//ON\)
mà \(NM=NB=>ON\) là đường trung bình \(\Delta MBC\)
\(=>ON=\dfrac{1}{2}BC=\dfrac{1}{2}.2=1cm\)
do ON là đường trung bình \(=>MO=OC=\dfrac{1}{2}MC\)
mà \(MC=DM=\dfrac{1}{2}DC=\dfrac{1}{2}.4=2cm\)
\(=>MO=\dfrac{1}{2}MC=\dfrac{1}{2}.2=1cm\)
\(=>OD=DM+OM=1+2=3cm\)
xét \(\Delta DNO\) vuông tại O\(=>DN=\sqrt{ON^2+DO^2}=\sqrt{3^2+1^2}=\sqrt{10}cm\)
Vẽ \(NP\perp AM\) tại P
\(\hept{\begin{cases}\text{có }AB=a\Rightarrow AM=\sqrt{AB^2+BN^2}=\frac{\sqrt{5}}{2}a\\\text{từ }CM:AM=AD=a\end{cases}}\Rightarrow MP=\frac{-2+\sqrt{5}}{2}a\)
Đặt ND = NP, ta có:
\(x^2+MP^2=MC^2+CN^2\)
\(x^2+\left(\frac{-2+\sqrt{5}}{2}\right)^2a^2=\frac{a^2}{4}+\left(a-x\right)^2\)
\(\Leftrightarrow x^2+\frac{9-4\sqrt{5}}{4}a^2=\frac{a^2}{4}+a^2-2ax+x^2\)
\(\Leftrightarrow a^2\left(\frac{9-4\sqrt{5}}{4}-\frac{1}{4}-1\right)=-2ax\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)a^2=-2ax\)
\(\Leftrightarrow x=\frac{\sqrt{5}-1}{2}a\Rightarrow CN=\frac{3-\sqrt{5}}{2}a\)
\(\Rightarrow MN=\sqrt{CN^2+MC^2}\)
\(MN=\sqrt{\frac{15-6\sqrt{5}}{4}a^2}\)
\(MN=\sqrt{\frac{15-6\sqrt{5}}{2}}a\)
P/s: Ko chắc
Từ NC = 3 NA => NC = 3/4 CA
Kẻ NH _|_CD
=> NH // AD
Theo Ta-let có
\(\frac{NH}{AD}=\frac{CN}{CA}=\frac{\frac{3}{4}CA}{CA}=\frac{3}{4}\)
\(\Rightarrow NH=\frac{3AD}{4}=\frac{3.4}{4}=3\)
Theo Pytago có \(AD^2+DC^2=AC^2\)
\(\Leftrightarrow4^2+8^2=AC^2\)
\(\Leftrightarrow AC^2=80\)
\(\Leftrightarrow AC=4\sqrt{5}\)
\(\Rightarrow NC=\frac{3}{4}AC=\frac{3}{4}.4\sqrt{5}=3\sqrt{5}\)
Áp dụng định lí Pytago \(NH^2+HC^2=NC^2\)
\(\Leftrightarrow3^2+HC^2=45\)
\(\Leftrightarrow HC^2=36\)
\(\Leftrightarrow HC=6\)
CÓ \(MC=\frac{CD}{2}=\frac{8}{2}=4\)
\(\Rightarrow HM=HC-CM=6-4=2\)
Áp dụng Pytago
\(HN^2+HM^2=NM^2\)
\(\Leftrightarrow3^2+2^2=NM^2\)
\(\Leftrightarrow MN^2=13\)
\(\Leftrightarrow MN=\sqrt{13}\)